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Words which appear to describe cognition, such as 'understanding' and 

'knowing', are used throughout educational literature, and in teachers' 

shared discourse, with flexibility and fluency. When we try to use them 

precisely they become problematic, as they can take slightly different 

meanings, but we communicate effectively about them by elaborating 

what we mean. However, once they enter the statutory language through 

official documents which describe what education should be achieving 

they can no longer be used casually. Teachers are accountable for the ways 

in which they fulfil the statutory requirements, and need to have a worked-

out and justifiable view of what 'understanding' means. Phrases such as 

'knowledge and understanding' and 'mathematical understanding' are used 

in the Initial Teacher Training National Curriculum (ITTNC) (ITA, 1999), 

and the Mathematics National Curriculum (NC) (QCA, 1999) refers 

frequently to pupils' 'ability to use and understand concepts' and to 

assessing such ability. These requirements suggest that there is a state 

called 'understanding' and we can know when it exists and when it does 

not exist. 

 

Understanding as a state 

In this chapter I am going to argue that the idea that pupil progress in 

mathematics can be seen by assessing recognisable states of understanding 

is an over-simplification of how learning happens. 

It is very common for new teachers to find themselves thinking, 'I never 

really understood addition of fractions (or calculus, or graph-plotting etc.) 

until I had to teach it!' In other words, the thinking involved in planning to 

teach (such as working out how to explain or exemplify and predicting 
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what pupils will find difficult) has enabled the teacher to re-examine 

existing knowledge and look at it in a new way that is recognised as being 

deeper, more connected and more secure than previous experience. 

Possibly the teacher has easily remembered how to add fractions, but 

thinking about how to teach has led to considering why it is done that way 

and brought new insights into the importance of equivalence, or has raised 

an awareness of the numerical value of the fractions. And yet the teacher 

has been able to add fractions, pass examinations involving this skill and 

be thought of as 'understanding adding fractions'. What is being recognised 

here is that, even when one is extremely competent in a mathematical 

technique, there are still ways in which understanding can grow in a new 

situation, when one looks at the topic differently. Understanding is not 

static. 

Marton and Saljö (1997) classify learning as surface (learning procedures 

and descriptions) or deep (learning about connections and relationships 

with previous knowledge)2. This kind of distinction can be useful when 

planning how to teach, but fails to take account of the fact that 

mathematical procedures consist of strings of simpler procedures which 

could be described as previous knowledge. To continue the example of 

adding fractions, one has to multiply and to add, to identify multiples and 

factors, to find common multiples and common factors. all dependent on 

previously acquired knowledge and skills. In this sense, learning 

mathematical procedures inevitably involves connecting and employing 

previously learnt procedures. What is missing from this observation, but 

is implied in Marton and Saljö's distinction, is a sense of underlying 

meaning allowing us to explain why we add fractions this way and justify 

the answers we get. 

Nevertheless, most mathematicians do not explain their actions when 

adding fractions. It is usually enough to know how to do it and to 

understand that the method works, but being able to reconstruct 

explanations, if needed, can contribute to future learning. So here we have 

two meanings of understanding: 'I understand that in situation X I need to 

do Y' and 'I understand why I need to do Y in situation X.' Ryle (1949), in 

describing types of knowledge, referred to these as knowing-that (factual, 
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definitional) and knowing-why. He also describes a third type, knowing-

how, which is the knowledge required to carry out the chosen action. 

Examples of knowing-that can be found in the NC, for example 

'Understand that "percentage" means "number of parts per 100" ' (p. 59). 

In this case understanding appears to mean 'knowing a definition of a 

word', where the definition gives us some clues (but very few) about what 

we can do with it mathematically. Some students may be able to construct 

everything they need to do with percentages from this fact, others may 

need much more help, but all can be tested on whether they can repeat 

definitions and correctly use procedures in particular circumstances. There 

is widespread agreement that what is being tested is not 'understanding', 

which relates to more complex forms of knowledge, but whether pupils 

can act in a certain way in the very precise circumstances of the test — a 

very localised knowing-that. 

A state of understanding would include knowing facts and procedures, but 

might also include a sense of underlying meaning, some connection to 

previous knowledge and, possibly, the ability to explain. However, as 

shown above in the description of previous knowledge links in adding 

fractions, making connections is not dependent on a sense of meaning or 

knowing-why. It is possible to progress in mathematics to some extent by 

performing increasingly complex procedures and hence displaying a kind 

of behavioural, fluent, automatised understanding of how to enact 

mathematical algorithms. 

 

Understanding as meaning and connection 

 
Skemp (1976) points out that knowing what it is appropriate to do, and 
when to do it, involves a different kind of understanding than knowing 

how to do it. He reports that Mellin-Olsen described two kinds of 

understanding: 'instrumental' as the application of rules without reasons 

and 'relational' as knowing what to do and why. His enthusiastic embrace 

of the importance of relations has influenced mathematics education 

hugely, but a cautious reader might well ask, 'Relate to what?' and notice 

that possible reasons in mathematics can range from the purely pragmatic, 

'It works in these circumstances, I can check by other means' to the purely 

logical, 'Given these axioms and these rules of logic, this will always 

work.' 



Repetition of a definition does not imply that the pupil attaches any 

meaning to what is being said. Understanding requires more than rote-

learning or following procedures correctly, although these could form the 

basis for future work to develop understanding. A poem learnt by heart 

can be brought back to mind and reconsidered many times. But the 

development of meaning is a personal process, dependent on what the 

pupil makes of successive experiences of a word or concept. 

Understanding is a personal thing . . . The prize is the greater 
meaning that can flow from the union of isolated thoughts. All it 
takes is a connection but making it may not be easy. Understanding 
is not something that can be passed or transmitted from one person 
to another. No one can make the connection for someone else. 
Where there are connections to be made, the mental effort has to 
be supplied by the learner. (Newton, 2000, p. 2) 

 

The meanings pupils develop about a concept, the relationships and 

reasons they attach to it, are inevitably obscure to others. Even in the 

education profession the nature of understanding is unclear and requires 

elaboration. For example, the NC contains the requirement that pupils 

should 'understand equivalent fractions' (p. 59). Clearly this would not be 

a matter of simply knowing they exist, nor is there anything to explain in 

this statement; it seems to be more an instruction to know-about. But what 

should be known? A teacher preparing to teach about them might know 

that they give alternative ways to represent the same numerical value, or 

proportion, or ratio; that, plotted as ordered pairs on a coordinate grid, they 

lie on a straight line; that the traditional rule 'what you do to the top, you 

do to the bottom' can be easily misunderstood and used to justify adding 

something to both the numerator and denominator, rather than only 

scaling. The teacher would know how to generate them, how they relate 

to each other and how this knowledge would contribute to later work. 

Given all these possible components of understanding, some of which are 

fortuitous, some pedagogic and some procedural, how can one assess 

whether a pupil understands equivalent fractions or not? 



 

Growth of understanding 

The above example suggests that understanding can change and develop, 

becoming more complex. Locke (1690), in his classic essay about 

understanding, proposed that ultimately everything is connected to 

everything else, hence growth of understanding relates to an increase in 

the number of links one makes. This a useful metaphor in mathematics 

because ultimately the links themselves can be named as mathematical 

objects (such as are expressed through abstract algebra, morphisms, 

networks, etc.). Since we do not know how much there is to know, there 

is no end to the growth of understanding. 

Pirie and Kieren (1994) have developed a theory of the 'growth of 

mathematical understanding as a whole, dynamic, levelled but non-linear, 

transcendentally recursive process' (p. 62). This hierarchical model has 

been used to relate different levels of understanding to what can be 

observed in pupils' behaviour, i.e. descriptions of observable actions of 

mathematical understanding that express background processes. It 

provides a structure for considering questions such as 'What can be said 

about the understanding of a pupil who chooses to use symbolic forms, or 

manipulates familiar formats to adapt them to a new situation, or derives 

a new fact from some previous knowledge?' 

They describe stages of primitive knowing, image-making and -having, 

property noticing, formalising, observing, structuring and inventising. 

Primitive knowing is what is known so far, making distinctions in existing 

knowledge and using it in new ways leads to formation of new images. 

Images can be manipulated and compared and lead to new properties being 

noticed by the learner who then abstracts something to be said about them, 

thus moving to a level of formalising. Reflecting on, and expressing, such 

formal thinking is called observing, and developing these observations as 

a theory is called structuring. After this the learner can create new 

questions and new lines of enquiry, which they call inventising. These 

processes, although increasingly complex, do not necessarily 

follow each other. In practice there is a lot of toing and froing between 

levels. 

In secondary school mathematics it is rare for teachers to have the 

opportunity to observe pupils closely enough to be so precise about 



their understanding. The simpler models of Bruner (1960), who sees 

learning as a process of developing iconic and then symbolic 

representations of enacted experiences, with the help of interaction with 

others, or Floyd et al. (1981) who see learning mathematics as a process 

of manipulating, getting-a-sense-of and articulating, might be easier to use 

in the classroom. Once learners can articulate or symbolise a mathematical 

idea, they are ready to manipulate it further to gain more understanding, 

or to treat it as the raw material for abstraction or more complex 

manipulations. 

Understanding in context 

Some teachers mav interpret 'relational understanding' to be entirely about 

appropriateness in a context, which could be mathematical or ‘real world’, 

while others may look for generalised arguments or descriptions of 

underlying structure. To interpret ‘understand’ as ‘able to use in a real 

context’ implies that all mathematics can be useful outside classrooms, 

which is dubious, and that pupils can apply what is learnt in one place to 

another, dissimilar, situation. The implication is that relational 

understanding enables instrumental use of mathematics. But formal 

mathematics is rarely used outside classrooms (Nunes, 1993; Watson, 

1998b), so the requirement to use it might be artificial and unrealistic. 

Further, Mason and Spence (1999) point out that none of the components 

of relational understanding (knowing that, how and why) necessarily lead 

to doing the most appropriate, sophisticated or efficient action in a 

particular situation. For a variety of ad hoc reasons the features of the 

situation just may not trigger a particular pupil to use the hoped-for 

mathematics. Cooper (in Chapter 13 of this volume), Christoforou (1999) 

and Watson (1999), among others, show that students' responses may be 

as much due to their social backgrounds and the way the mathematical 

question is structured as they are to understanding. Understanding appears 

to depend on the situation, different understandings being contingent on 

circumstances. 

 

Understanding as overcoming obstacles 

Sierpinska (1994), speaking of advanced mathematics, describes 

understanding as the overcoming of particular obstacles in mathematics. 



Such obstacles include common difficulties in learning mathematics, 

inherent difficulties in the subject, errors, misunderstandings, 

overextending ideas that only work in a restricted domain, and unhelpful 

ways of thinking, such as generalising with too little data or failing to 

discriminate between opinion and fact. She sees these obstacles as arising 

from 'unconscious, culturally acquired schemes of thought and 

unquestioned beliefs about the nature of mathematics' (p. xi). In other 

words, some obstacles are to be expected and taken into account when 

teaching. It is sensible to include overcoming identifiable obstacles as a 

component of understanding; the ITTNC pays significant attention to this 

aspect but on its own this approach may do little for the development of 

deeper knowledge. 

 

The example of multiplication 

To illustrate that understanding is dynamic, contingent and local I shall 

now look at typical meanings of 'understanding multiplication'. It is 

possible to write 5 ×6 = 30 from a variety of viewpoints, each one adequate 

for some purpose: 

• a learnt statement with no underlying number sense, from rote-

learning;  

• a representation of grouped counting of objects, either five lots 

of six or six lots of five; 

• an example to show a general grasp of commutativity;  

• an example of number patterns in the five-times-table;  

• an example of number patterns in the six-times-table;  

• a learnt statement, with underlying number sense;  

• an example of multiplying two positive numbers;  

• multiplication as repeated addition;  

• a way to work out the answer to a problem;  

• multiplication as scaling;  

• multiplication by numbers greater than 1 causes increase;  

• a representative of a binary operation. 

 

In this list are hidden several potential obstacles, for example the need to 

understand cardinal numbers, to use numbers as objects in their own right, 

to have an image of what happens when one multiplies and to shift from 



specific examples to general properties. The list also presages future 

obstacles: the inadequacy of seeing multiplication as repeated addition, or 

grouped objects, when multiplying by negative numbers or by numbers 

less than 1; the successive levels of abstraction which remove the learner 

further and further from images of addition or scaling; multiplying vectors 

or matrices require a more abstract notion. For each viewpoint above apart 

from possibly the first, one can imagine a teacher legitimately saying the 

pupil understands multiplication. And yet the image of grouped objects is 

significantly unhelpful if one is trying to multiply matrices. 

Understanding, therefore, depends not only on the mathematical context 

but also the pedagogic situation; there is a sense in which one can 

understand 'enough for the moment'. 

 

What teachers mean by understanding 

If we cannot be specific about understanding, then we are unlikely to 

pinpoint particular moments when pupils achieve it as an attainable, 

definitive, stable state. When teachers say they are teaching for 

understanding they rarely mean that they want their students to know about 

formal logical systems. More often they are talking about pupils having a 

sense of the form and purpose of the mathematics, and the places where it 

is likely to be useful. They may want students to be able to 'generate' or 

‘reconstruct’ an appropriate response in new situations, not just 

mechanically repeat back what they have learnt by heart. Some 

typical statements from teachers are: 

I know they understand when: 

they can say it to me in their own words;  

they can tell me how they did it;  

they can use it in context without being told;  

they use it without prompting;  

they can answer a question which comes at it in a slightly 

different direction. (Watson, 1998a) 

 

All of these indicate that teachers want pupils to have enough of an 

overview of techniques and procedures to be able to shift into another 



representation, generalisation or transformation which allows use in 

unfamiliar ways, explanations, general description and application 

(Dreyfus, 1991).  Teachers, therefore, are recognising the abilities to 

generalise, represent and transform as components of understanding 

mathematics. Even given the temporary and local nature of understanding, 

it might be possible to say something about whether a pupil has 

generalised, represented or transformed some mathematical concept in 

given circumstances. But these are mental actions, so how can a teacher 

collect evidence of pupils' understanding? 

 

How do we know what a pupil understands? 

In order to recognise such generalisations, which are crucial in all 

mathematics, teachers have to rely on what they can see, hear and read. 

Hence there is no room for intuitive understandings in the above 

statements (Fischbein, 1987; Claxton, 1997) except those intuitions that 

might enable pupils to apply mathematics in new places. Instead there is 

much importance placed on verbal expressions of methods, although an 

essential aspect of mathematics is that structures can be expressed and 

manipulated in non-verbal ways. Another emphasis, which teachers might 

make, is that successful performance of mathematics in given contexts 

might indicate certain kinds of understanding. But observing pupils' 

actions in the classroom is difficult to manage systematically, and in the 

end one might only have the outcomes of written work to see. 

The ITTNC says that new teachers should know: 

. . .how to use formative, diagnostic and summative methods of 

assessing pupils' progress in mathematics, including (ii) 

undertaking day-to-day and more formal assessment activities so 

that specific assessment of mathematical understanding can be 

carried out … (and) (iii) preparing oral and written questions and 

setting up activities and tests which check for misconceptions and 

errors in mathematical knowledge and understanding … and 

understanding of mathematical ideas and the connections between 

different mathematical ideas. (TTA, 1999, p.14, 9aii and iii) 

 

In order to achieve this a teacher must have a very clear idea of what kind 

of understanding is being assessed: instrumental, contextual, procedural, 



relational within mathematics, transformable, generalised, logical or 

abstract, with obstacles successfully overcome. Also required is an 

awareness of how such understanding can be assessed. 

Is it possible, for instance, to find out if a pupil's understanding is relational 

or instrumental? Or, if one believes all understanding to be relational, even 

if it is related to a fragmentary rule-performance view of mathematics, can 

a teacher find out to what is it related? There are problems with 

observations of students. Although such observations tell us something, 

they do not give us access to understandings that have not been expressed 

in accessible forms (Watson, 1997). In addition, all observations have to 

be interpreted by the teacher, and one may not know how such expressions 

were achieved. For example, a correct proof can be given because it has 

been learnt by heart; this may or may not mean that the student has an 

understanding of how the proof 'works'. The understanding could be 

relational or could be an instrumental response to a request to 'prove'. 

Neither does it indicate that the student has learnt anything about that type 

of proof in general, even if the student has grasped the reasoning in the 

learnt proof. The teacher needs to be cautious not to impute levels of 

understanding without evidence, and needs to probe further if more 

inferences have to be made. 

Oral evidence, though highly valued by all the teachers, is time-consuming 

to organise. Language difficulties, diffidence or fear might prevent some 

pupils from speaking. It is rare to overhear useful remarks in a busy 

classroom, although such remarks often give insight into a pupil's thinking 

before they are able to record what they think on paper. In addition, oral 

evidence does not give hard evidence to support-a teacher's judgements, 

so that over-reliance on oral evidence may leave the teacher vulnerable to 

criticism when being inspected by others. Reliance on oral work ought also 

to be seen in the light of Bernstein's work (e.g. 1971) on how middle-class 

pupils are at an advantage in school because the elaborated codes of 

language are what they might be used to at home, where working-class 

pupils are expected to communicate at school in a way very unlike the 

codes used at home. This theory relies on a very stereotyped view of 

language use outside school, but it does prompt a closer look at language 

forms in mathematics classrooms. The request to 'explain how you did 

something', a common requirement in teacher— pupil discourse, is a rare 

form of speech outside school in any social grouping. Hence reliance on 



pupils' ability to demonstrate their understanding orally for assessment 

purposes is expecting a keen awareness of different discourses as well as 

mathematical ability. 

Many teachers comment that written work on its own is not enough to 

convince them that pupils understand; they want oral evidence, or written 

workings and explanations as well. However, there is also wide 

recognition that many pupils have considerable difficulty in recording in 

writing what they could do mentally or practically. Assessment ofwritten 

work, particularly where it involves explanations or extended exploration, 

has to be seen in the light of research into assessing coursework. Several 

writers have shown that pupils can be very selective in what they write 

down, so that written work represents a highly-edited view of their 

mathematical thinking (MacNamara and Roper, 1992). Sometimes this is 

an attempt to produce curtailed, terse, classical mathematics, but it can also 

be due to a failure to appreciate what is important or an inability to find 

ways to represent abstract or intuitive thought on paper.  

Observation in a busy classroom is difficult-to organise but can reveal that 

the pupil is using particular methods, such as counting instead of using 

number bonds. Observation of actions depends in part on the teachers' 

notions of how mathematical activity might be observable. Sometimes this 

is clear, such as when one sees a pupil use a ruler and read off a 

measurement correctly. At other times it has to be interpreted, such as 

when a pupil is trying to make a cube from six squares and may appear to 

us to be doing it in an obscure way, but nevertheless succeeds. Other times, 

there is little to intepret; the pupil who is gazing motionless at a problem 

may or may not be thinking about it, and the thought may or may not be 

productive. On the other hand, avid writing may not indicate anything 

useful is being done. How the teacher interprets the actions can be 

influenced by many factors. In the examples above, interpretation depends 

on what the teacher expects to see relevant to the mathematics, what the 

teacher expects from the particular pupil and what the teacher expects from 

pupils in general. It also depends on what is noted by the teacher that can 

be affected by previous impressions of the pupil's abilities. 

In order to avoid the possible unfairness that can creep into assessment, 

given the warnings above, it is possible to: 



• be prepared to be surprised — avoid forming firm views of a 

pupil's capabilities and achievements; 

• use a variety of forms of assessment so that you accumulate a 

broad view of what a pupil can do;  

• relate the way you assess, and what you record, to the purpose of 

the assessment;  

• discuss your views and interpretations with colleagues;  

• look for evidence which contradicts, as well as that which 

corroborates, your views;  

• do not base irrevocable decisions solely on your own 

interpretations of what a pupil can do. 

 

Purposes of assessment 

Diagnostic assessment 

This purpose of assessment assumes that you can find out something about 

the pupil's current state of knowledge in order to decide what and how to 

teach. As I have argued above, it is not possible to establish current 

understandings with any certainty because of the complex, dynamic and 

situated nature of mathematical understanding. There are commercially 

produced tests to help in the diagnostic process, but it is important to 

realise the results tell you about a pupil's response to a particular question 

on a particular day. Responses may indicate that common 

misunderstandings exist, or that the pupil was able to get the right answer 

using a specific method, and this is useful information when planning to 

teach, but general judgements about individuals made on the basis of such 

tests could be flawed. A more immediate way to assess the knowledge 

pupils bring to a mathematics lesson would be to set up an interactive 

situation in which pupils are somehow encouraged to reveal how they see 

a topic, perhaps by making up their own questions, or describing methods 

on the chalkboard, or telling each other what they already know. The more 

we can find out about how they already think about the topic, and what 

they know which is related to it, the more appropriately teaching can be 

planned and focused. 

 



As Hawkins (1967) said, active and talkative lessons allow pupils to 

show us what they know, and what images they attach to concepts. When: 

children are rather passively sitting in neat rows and columns and 

manipulating you into believing that they're being attentive because 

they're not making any trouble, then you won't get much 

information from them. Not getting much information about them, 

you won't be a very good diagnostician of what they need. Not 

being a good diagnostician, you will be a poor teacher … When we 

fail in this diagnostic role we begin to worry about 'assessment'. 

(p23) 

 

Since the purpose of diagnostic assessment is to find out what is not 

known, what is misunderstood, and to inform future teaching it is 

debatable whether keeping records permanently for individual pupils is of 

any use except to provide a base from which to assess their later progress. 

Formative assessment 

Teachers make judgements all the time about how pupils are responding 

to teaching, and what progress they are making. For progress to be 

observed, hierarchical criteria need to be used, such as level descriptors of 

the NC, or progress tests in a published scheme of work3. Pupils can be 

made aware of such criteria and possibly be involved in assessing their 

mathematics against them. In this way, the teacher and the pupil are both 

informed about how they are responding to teaching, and what topics, 

concepts or teaching styles are causing problems. Progress is often seen to 

be a one-way process, but the Pirie—Kieren model expects pupils to return 

to 'lower' levels of knowing from time to time, and if pupils have not 

worked in a particular area of mathematics for some time they may need 

to revisit earlier ideas. Often, formative assessment is accompanied by 
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target-setting in which pupils are given, or may suggest for themselves, 

some learning goals for the near future. This can be effective in helping to 

motivate pupils, but can work against the development of deep 

understandings, encouraging instead the desire to acquire more and more 

skills at the expense of higher levels of understanding and reflective 

approaches to consolidating learning. 

It is clear from this description that formative assessment relates to what 

has been taught and what will be taught to those pupils, rather than to some 

overarching curriculum plan. Although the information may be of value to 

individual learners, it is also very important for teachers to use in order to 

monitor their teaching. Again, it is debatable how valid permanent record-

keeping about individuals would be, and judgements made about pupils 

on the basis of formative assessment need to be temporary. Formative 

assessment does not necessarily provide useful baselines for describing 

progress, as it usually relates to current teaching and learning. 

 

Summative assessment  

At the end of a course, or at fixed points during the school career, pupils 

may br tested in a variety of ways to see how much they have learnt and 

identify their overall progress. These assessments are done by comparing 

pupil work to an overarching plan, such as a national curriculum or some 

course objectives, and summing up what has been achieved. This purpose 

of assessment is usually to categorise and grade pupils individually, thus 

influencing future educational choices, and to get data about a group or 

cohort for other purposes such as within-school or between school 

comparisons. 

Methods of assessment 

 

Although there are published tests for all three purposes described above, 

and national statutory tests for summative purposes, there are many other 

assessment activities which are an integral part of classroom life. In 

addition, teachers' judgements of what pupils have achieved are included 

in statutory assessments. A systematic study of methods used by teachers 



to find out what their pupils know (Watson, 1998a) found that, although 

teachers knew that their assessment findings were dependent on 

circumstances, they nevertheless believed that there was some ultimate 

state of 'understanding' about which they could say something, if only they 

could get enough information about pupils. More usefully for our purposes 

here, they described a variety of ways of finding out as much as they could 

about pupils' understanding because it was of central importance for their 

decisions about what and how to teach, who needed special support, who 

needed further challenges, and so on. 

There are dense links between choice of assessment method and choice of 

teaching (see Watson, 2001) or tasks, questions and interactive strategies 

(see Mason, 2001) so I shall not comment fully on the pedagogy associated 

with every method below. Instead, I shall highlight how each method 

contributes to the meanings of 'understanding' given at the start of this 

chapter, and also how it relates to the three main purposes set out above. 

1 Looking for how mathematics is used in the context of practical or 

investigational work, or more complex mathematics. Is a concept used 

where appropriate? Has it been adapted for use? 

If the concept is used, this can demonstrate that the pupil has internalised 

it and generalised it enough to recognise where it may be useful, and to 

transform it for use. However, failure to use it does not mean it is not 

understood; it may only mean that it was not seen as appropriate, or was 

deemed too complicated for the context, or just failed to come to mind. 

How it is used can give formative information; successful use can 

contribute to summative assessments; a practical situation can give 

diagnostic information 

 

2. Explaining to the teacher; explaining to another student 

Verbal explanation can be evidence of generalisation, or of noticing and 

formalising properties of a procedure or concept. Some pupils may be 

uncomfortable about verbalising; those operating at a highly abstract level 

may not see how words can express the mathematics. Others can transform 

their understanding into words and learn more by doing so. This method 

can give useful diagnostic and formative information. 



3. Response to teacher-led questioning or open prompts, e g. 'Tell 

me about...   

While closed questions may give information about understanding, they 

may also encourage instrumental, or learnt-by-heart responses. 

Additionally, some pupils are adept at guessing answers from the teacher's 

cues, while others may choose not to take part. Open prompts may reveal 

much more about a pupil's personally-constructed understanding, but may 

fail to provide enough structure to trigger the most sophisticated response 

possible. One prompt that appears to be effective is 'Make up the 

hardest example you can.' Such questions can generate useful 

information for formative assessment, and may incidentally allow the 

teacher to diagnose difficulties, but may not reveal the full extent of a 

pupils' knowledge and can only give summative information insofar as 

they reveal ways of working with mathematics. 

4. Pupil expressing insight while working on an intended area of 

mathematics; or while working on another area of mathematics; 

communication pupil-to-teacher or pupil to-pupil 

This is the kind of incident which is very revealing when it is spotted, but 

cannot be planned and hence may not be systematically incorporated into 

assessment practices. What is demonstrated might be intuition, or a 

recognition of some mathematics that has been met previously in some 

other form. It is more likely to take its place in the mental picture that 

the teacher develops for each pupil. In that sense it is formative, in that 

it informs the teacher that this pupil may be able to cope with particular 

kinds of challenge in future. 

5. Response to similar, simpler, slightly different or harder 

examples, or examples where questions are asked in other ways 

If a teacher is trying to find the extent or depth of a pupils' understanding 

slight alterations of a standard question-type are very useful, and can be 

systematically incorporated into worksheets, homework tasks and tests. 

These can be used to identify common misunderstandings, and show how 

far the pupil is able to adapt, manipulate and transform the concepts taught. 

Careful developments of questions can be used, therefore, to diagnose 

what needs to be taught, and to summarise what can be done in certain 



situations. The more open approach of asking pupils to make up their own 

hard questions, as in 3 above, can also be used. 

 

6. Self-assessment 

A formative assessment method that also motivates and informs pupils is 

to ask them to assess their own progress. There are several ways of doing 

this, but to be effective pupils must have some understanding of what it is 

they are supposed to achieve, otherwise the exercise can degenerate into 

meaninglessness. Writing journals, in which they describe what they have 

learnt by giving instructions or examples and recording difficulties 

(Waywood, 1992), is one way. Such exercises can show teachers what 

pupils see as the important aspects of a topic, and their sense of underlying 

structure. 

7 Tests: teacher-written tests, impromptu questions, use of a bank of test 

items, test as part of published scheme, tests written by students for their 

class 

Answering test questions is an obvious way to assess understanding, but 

the circumstances of the test need to be taken into account when deciding 

how to use the results. Timed tests consisting of closed questions assess 

algorithmic competence, speed, accuracy, recall, the ability to identify 

what is needed to answer a question and the ability to adapt what is known 

to fit a situation. It matters, therefore, whether the test is covering what has 

been actually been taught, or what is supposed to have been taught. It 

matters also how it has been taught, because the difference between the 

questions on the test and the kinds of situation the pupil is used to working 

with is crucial to how the pupil can engage with the questions. For this 

reason, teachers wishing for the best possible test results may try to 'teach 

to the test', in order to give their pupils the advantage of not having to adapt 

their understandings too much. Sometimes teachers are criticised for doing 

this, particularly when it leads to an instrumental approach in which pupils' 

responses are triggered by certain language forms in test questions. One 

way to teach to the test, but also to pay attention to the development of 

deep knowledge, would be to regard test questions as problems to be 

solved and develop a critical, questioning approach to the task. 



Tests are commonly used for all three assessment purposes, but there are 

many problems with their use as summative tools. The style of question 

can attract some students and alienate others, questions can be ambiguous, 

small details of language can lead to misinterpretation of What is required 

(think of the difference between 'subtract' and 'subtract from'), the 

pressures of the test situation can lead to underachievement and so on. 

Analysis or discussion of errors 

For formative and diagnostic purposes pupils can be asked to explain 

how they did some mathematics, thus showing what sort of reasoning 

led to incorrect answers. This is also helpful when answers are correct! 

This method requires close one-to-one attention and is hence difficult 

to manage. However, a teacher can use similar methods with a whole 

class in order to become better informed about a range of 

understandings they might have. In addition, working on common 

errors can aid understanding. This is an example (as are several of the 

methods above) of good assessment practice merging with good teaching. 

Mason's article on questioning (Mason, 2001) gives further examples of 

this. 

 

9 Activities which use knowledge or processes, or both, and are expressed 

through paper, observation, verbal, investigative or practical work 

Many teachers in my research said that they would know for sure that 

pupils understood if they could apply their mathematics, unprompted, in a 

new situation. The situation might be a new mathematical context, or a 

practical situation such as on the sports field, or in technology lessons. 

Transfer mathematics from the classroom to other situations that have their 

own habits, ways of seeing things and ad hoc methods is complex and 

sophisticated, as has already been said. But application to later work in the 

mathematics class room would indeed inform the teacher about how pupils 

see the meaning, use and scope of a topic. As in all types of assessment, 

this is most effective if pupils are familiar with what is required of them. 

If a class commonly approaches new mathematics with the questions 

'What do I know which is like this?' or 'How does this fit with what I 

already know?' then connecting and using a new topic will become a 

working habit. Not only will the teacher be able to see who understands 

the mathematics that has to be used, but how it is understood. In addition, 



the ground can be prepared for helping pupils see mathematics in 

connected way, relating one algorithm to another, and hence constructing 

network of knowledge. 

Knowing about understanding 

Although commonly used in education, the word 'understanding' is 

complex an open to a variety of interpretations, particularly in 

mathematics with its multiple layers of generalisation, abstraction and use. 

Understanding depends on mathematical context and on what is expected 

of the pupil. It can also depend on how mathematics is taught. To find out 

what a pupil understands is dependent on what it means to 'understand' in 

a context, and how the teacher identifies, collects an interprets evidence. 

Teaching for understanding (Watson, 2001) and assessment can be 

intimately related. 
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