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FOREWORD

I am happy that the Department of Mathematics took the initiative in organizing the International
Conference on Mathematics Education and Mathematics in Engineering and Technology and much more
when it was on the occasion of commemorating the fiftieth death anniversary of the founder Sri V. N
Gangadhara Panciker. This is the first international conference at MCET and | congratulate the General
Convener and Head of the Department of Mathematics Dr. Mallayya and all the faculty members of the
department for taking active interest in organizing and making all arrangements with utmost care for the
successful conduct of the event. Mathematics is the backbone of all streams in Engineering, Science and
Technology and recent developments and innovations in mathematics have triggered vast technological
advances. A sound knowledge of mathematics from basic to advanced level is essentially needed for
understanding and assimilating any technological process. In this context the initiative taken by the
department of mathematics to organize the first international Conference at MCET on ‘Mathematics
Education and Mathematics in Engineering and Technology’ is quite apt.

Active participation of delegates and distinguished experts from reputed institutions in India and other
parts of the world like Greece, Manchester, California, Oxford, Hungary, South Africa, Turkey, Florida,
Ohio, New Zealand, and Nepal has made the conference a great success. | have great pleasure in
presenting the Proceedings of ICMET’13 with papers covering a broad spectrum of topics relating to
mathematics education and mathematics with applications in Engineering, Science and Technology and |
hope that it will remain a valuable document for enthusiasts in future. | express deep gratitude to all the
contributors to this volume and all the delegates who enriched knowledge with their presentations and
active participation, and made the four day academic meet a memorable event in the history of MCET.

Dr Ashalatha Thampuran
Director, MCET






PREFACE

It is a matter of immense pleasure for the Department of Mathematics to take the lead in organizing the
first international event in MCET. Taking the vast importance and inevitable role of mathematics in all
streams of Engineering, Science and Technology, an International Conference on Mathematics Education
and Mathematics in Engineering and Technology (ICMET’13) was organized in MCET from 17-20 Dec
2013. It was organized on the occasion of commemorating the fiftieth death anniversary of Sri. V. N
Gangadhara Panicker, the noble soul behind this fast progressing institute of technology. The event also
celebrated the International Year of Statistics with talks by eminent Professors of Statistics.

The conference was cosponsored by KSCSTE and technically supported by Kerala Mathematical
Association (KMA), Indian Society for Technical Education (ISTE Kerala Section) and Indian Society
for Industrial and Applied Mathematics (ISIAM) and | express heartfelt thanks for their valuable support.

While celebrating the International Year of Statistics, it is a great honour for us to have the conference
inaugurated by Dr. Andreas N. Philippou, an eminent Professor of Statistics from University of Patras in
Greece and former Education Minister of Republic of Cyprus. With 20 invited talks including key note
addresses by Dr. Philippou and Dr E. Krishnan (visiting faculty IISER TVM) and 26 papers the
conference provided a broad platform for powerful intellectual stimulation for 150 delegates from various
parts of India and abroad to interact and share mathematical knowledge updating recent advances and
innovations in the field. I am happy to know that the delegates who arrived from far and wide had a nice
and fruitful time and carried home pleasant memories of the academic meet. We are deeply indebted to all
the esteemed speakers and delegates for making the conference a success with their pleasant participation,
keen interest, and valuable presentations.

I gratefully acknowledge the wholehearted support, help and advice provided by the Hon’ble Chairman
Sri. G. Mohandas, Secretary Mrs Rani Mohandas, Treasurer Sri Krishna Mohan and Administrative
Secretary Sri Nandagopal. Words are not enough to express heartfelt gratitude to the Respected Director
Dr. Ashalatha Thampuran for the motivation, guidance, and unstinting wholehearted support at each and
every stage of this venture. | also thank the Principal Dr Ibrahimkutty, all Heads of departments, Faculty
members, Advisory Committee and Organizing Committee members, Colleagues, Students, Volunteers
and all sponsors for their valuable support. Heartfelt thanks are due to Dr George Gheverghese Joseph
(Manchester, Academic Convener ICMET) and Dr C Satheesh Kumar (Kerala University) for their
sincere efforts in planning and organizing the scientific programme. | also place on record our deep sense
of gratitude to one of the esteemed delegates Dr Premjit Singh (Athens, Ohio, USA) for instituting an
annual scholarship in MCET in the name of her mother Mrs. Kaushalya Vati to encourage the education
and empower a needy and deserving girl student of MCET.

I sincerely acknowledge the valuable technical help received from Sri P.R Krishnakumar (Chief
Librarian, MCET), Sri Madhav Sankar R Warrier (B Tech Student, MCET), and Sri Rahul R.M (P.G
Student, Kerala University) at various stages in bringing out this volume.

Dr V. Madhukar Mallayya

General Convener, ICMET’13
Head, Department of Mathematics
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Distributions of order k& with applications

Andreas N. Philippou

University of Patras, Greece
professoranphilippou@gmail.com

(Keynote Speaker)

Abstract : The distributions of order k are infinite families of probability distribu-
tions indexed by a positive integer k, which reduce to the respective classical probabil-
ity distributions for £ = 1, and they have many applications in Statistics, Engineering,
Meteorology, etc. A few of the most applicable ones, namely the geometric, the neg-
ative binomial, the binomial, and the Poisson distributions of order k, are briefly
discussed presently and an application is given in Reliability.

1 The Geometric Distribution of Order £

For any positive integer k, denote by T} the number of independent trials with success
probability p until the occurrence of the k* consecutive success, and set ¢ = 1 — p.
Philippou and Muwafi (1982) found that, for n =k, k+1,---,

(S PERR 17

and 0 otherwise, where the summation is taken over all k-tuples of non-negative integers
ni,Ng, - ,ny such that ny +2no +--- 4+ knip =n — k.

The proof is based on the observation that a typical element of the event (T}, = n) is
an arrangement

A=21,29,  , Tpytngtotn, 5SS - S(kS's) (1.2)

such that nq of the xs are F1 = F,no of the zs are £y = SF,--- ,n; of the zs are
Ey,=S5S---SF(k —18s), and ny + 2ng + - -+ + kng, = n — k. Fix ny,--- ,n,. Then the

number of the As is
ny, - ,Ng .

and each one has probability

P(A) = [P(E)]™ [P(E2)]™ - - [P(Ex)]™ P(SS - - - S)(kS's) N
=q" (pq)"* -+ (Pk_ltﬁnkpk =p" (%>nl+---+mC .

Therefore

Ny, -+, N

e ni+---+n
P(all A’s:n; >0 and fixed, 0 <i<n)= (nl ot nk) p" (%) ' ’ (1.5)

3



But the non-negative integers ny,ne,- -+ ,ng may vary subject to the condition n; + 2ng +
.-+ 4 kni = n — k, and this completes the proof of (1.1)

Is fr(n) a proper probability mass function?

The answer was given by Philippou, Georghiou and Philippou (1983) who employed
the transformation

k
n; = my(1 <i < k), n=m+Y (i—1)m; (1.6)
=1

and the multinomial theorem to show that

Y feln)=> P(Tih=n)=1 (1.7)
n=~k n=~k

They named the distribution of T}, the geometric distribution of order k£ with parameter
p, since for k = 1 it reduces to the geometric distribution with pmf.

filn) =q"""p n>1 (1.8)

They also employed the transformation (1.6) to obtain the probability generating function
(pgf) of T, say gi(s) and hence its mean and variance:

_ (1 —ps)phs
gk(s) T 1 s + qpk8k+1 |5| <1 (1'9)
1_pk 1— 2k+1 qpk_p2k;+1
oy = — and op = ( 2) oK (1.10)
qp q-p

A different derivation of gi(s) was first given by Feller (1968) who used the method of
partial fractions to derive the surprisingly good approximation

1 —psg

P(Ty, > n) ~
(T ) (k+1— kso)gsp™

n>k (1.11)

where s¢ is the unique positive root of p¥s*/g.(s) Relation (1.1) implies

k)
P(T}, = nlp=1/2) = =22 n>k (1.12)
and
anl
Py =nlp=1/2) = ——, n>2 (1.13)

)

where F), is the n'" Fibonacci number, and F,gk is the n'™™ Fibonacci number of order k,

since F,(LZ) = F,, and

(k) ny+---+ng
Fn+1—Z< e ) n>0 (1.14)

where the summation is taken over all k-tuples of non-negative integers ni,no,- -+ ,ng
such that ny + 2ng + - -+ + knyi = n[30, 38].



Alternative simpler formulas for calculating fx(n) have been found. The following
recurrence, for example,

fu(k) = p", fi(n) = qp", k+1<n<2k (1.15)
fe(n) = fa(n —1) — gp" fu(n — 1 — k), n>2k+1

due to Philippou and Makri (1985), is very efficient.

2 Negative Binomial Distributions of Order k

Assuming that Xq,---, X, are independent random variables distributed as geometric of

order k with parameter p, and setting T, = 22:1 X, the latter authors showed that, for
n>rk

fr,k(n) = P(Tr,k = n)
ny-- ,ng, T — 1 p
and 0 otherwise, where the summation is taken over all k-tuples of non-negative integers

ni,no, - ,Nk such that nqy +2ng + .-+ + kng =n —rk.
By means of the transformation (1.6) and the multinomial theorem,

> frk(n) =) P(Thp=n)=1 (2:2)
n=~k n=~k

They named the distribution of 7). ; negative binomial distribution of order k with pa-
rameters r and p, since for k = 1 it reduces to the negative binomial distribution with
pmf

fra(n) = (:L: i) P n>r (2.3)

The pgf, mean and variance of 7.}, are

1— k.k T
orls) = [T sl< (2.4)
1-— pk
Hrge =T k0
» . (2.5)
o  1-(2k+1)gp*" —p
Org =T 2. 2k
a’p

Simpler formulas for calculating fx(n) exist. Philippou and Georghiou (1989), for
example, derived the following efficient recurrence for f, ;(n) which generalizes the above
mentioned one for fi(n).For n > rk+1

k
Fra) =~ S o~ v 4 = DI el — ) (2.6)
i=1

Denote now by Tfk the waiting time until the r — th occurrence of a success run of length
greater than or equal to k in iid trials with success probability p. Then it may be easily
shown that

T = Trn + T 1q (2.7)

T



where 7)., is as above and T:_Ll is distributed as T;,_1; with p and q interchanged.
Therefore,

fSn) =P(T5% =n) =Y forln —2)f 1,1 (2)
v=0 (2.8)

= -1
=> frrln—x) <x ) Pl n>r(k+1) -1,
=0

r—2

and 0 otherwise, where f, ;(n — k) is given by either (2.3) or (2.6).

For an alternative formula, simpler than (2.8), we refer to Museli (1996). It may be
obtained from the pgf gfk(s)g:_u(s) of Tfk, where g;_; ;(s) is the pgf of 7,7, ;. Clearly,
T, 1. is the waiting time until the r-th non-overlapping occurrence of a success run of length
k. Ling (1989) introduced another class of very applicable negative binomial distributions
of order k, by deriving two recurrence relations for the pmf of the waiting time W, ; until
the » — th overlapping occurrence of a success run of length k in iid trials. One of them is
forn>k+r—1

r -1 o
P(Wr,k = n) = Z <§ B 1) pT—]q]_lP(jjng =n—-—r+4+ 1) (29)
7j=1

He also derived its probability generating function, mean and variance. The mean is

rq+p—p"

E(Wr,k) = qpk

(2.10)

Another formula for the pmf of W, j analogous to (2.1), was derived by Tripsiannis and
Philippou (1997).

3 The Poisson Distribution of Order k

Assuming that r¢ — A(\ > 0) as r — oo and g — 0, Philippou, Georghiou and Philippou
(1983) showed that, for z =0,1,2,---

ATy

I = fk(1'7)\) (3.1)

: _ _ — o~ kA A
rhﬂrgoP(Tr’k rk .%') ¢ Z xp!-xp!

and 0 otherwise, where the summation is taken over all k-tuples of non-negative integers
x1,Zo, - ,x) such that z1 4+ 229 + - -+ 4+ kxy = x. By means of the transformation (1.6)
and the multinomial theorem,

o
D fulwsh) =1 (32)
n=k
he distribution with probability mass function fi(z;\) has been called the Poisson
distribution of order k with parameter X\ , since for k = 1 it reduces to

e AN
z!

filz; A) = z=0,1,2,---, (3.3)

which is the pmf of the Poisson distribution



The pgf, mean and variance of fi(z;\) are

gr(s) = exp — [)\ (k: - Zle sk)] |s] <1 (3.4)
i k(k:2+ D) ya_ Kl 1)6(2/<: 1), 55

See also Aki et al. (1984), Philippou (1983b, 1986), and Balakrishnan and Koutras (2002)
for the geometric, negative binomial and Poisson distributions of order k£ mentioned above.

4 An Open Problem

Denote by my, » the mode(s) of fi(x;A), i.e. the value(s) of x for which fi(x;\) attains
its maximum. It is well known that

miy=Aand A—1lif Ae Nand m; = [A] if A\ ¢N (4.1)

The problem of deriving my,  for A > 0 and k& > 2 was posed by Philippou (1983) and
remains open since then, apart from the following partial advancements.

Luo (1987) obtained a lower bound for my, y. Georghiou, Philippou and Saghafi (2013)
established lower and upper bounds and showed that

Me(k+1)  k
%ﬂ—@ 2 < k<5, AeN (4.2)

Furthermore, in a recent note submitted for publication, Philippou (2013) showed that

me s =

mg =0, k> 1, 0<A<2/k(k+1) (4.3)

. He also showed that

max=0,0 <A< —1+V3 mox=2—-1+V3<A<1 (4.4)

5 Binomial Distributions of Order &

Denote by N, the number of non-overlapping success runs of length k in n(n > 1)
independent trials with success probability p(0 < p < 1). The asymptotic normality of a
normalized version of N, ; was established by von Mises (see Feller 1968, p 324, where a
simpler proof is presented).

Its exact pmf was obtained by Hirano (1986) and Philippou and Makri (1986), who
named the distribution binomial distribution of order k with parameter vector (n, p). They
found that, for x = 0,1, [n/k]

k—1 n n n r1+tTg
1"1 .. l‘k a’l‘ q
P(Npp=x)=p" 5.1
(N = 2) = p §Z< L1y " Tk, T )() (5:1)

p
where the inner sum is taken over all k-tuples of non-negative integers xi, 22, - , Tk
such that z1 + 2x9 + -+ -+ kxp, +1=n — kz.
Clearly,
P(Npy1=1x) = <n> p¢" e =0,1,--- ,n. (5.2)
x



A simpler formula than (5.2), in terms of binomial coefficients, was derived by Godbole
(1990). Aki and Hirano (1988) established recurrence relations for calculating binomial
probabilities of order k and found the mean of Ny, ;. For n > k

n/k]
E(Npg)= > [(n—jk+1)p"" — (n - jk)p/* (5.3)

J=1

Antzoulakos and Hadjiconstantinidis (2001) derived the rth factorial moment of N, j.

Another class of binomial distributions of order k was introduced by Ling (1988) who
considered the number M,, ;. of overlapping success runs of length £ in n iid trials . Its
pmfis forx =0,1,--- ;,n—k+1

I T1++Tn
P(M,y=1)=p ZZ <x1 :”) <p> (5.4)

and 0 otherwise, where the inner sum is taken over all n-tuples of non-negative integers
x1,T9,- - ,x, such that x1 + 2x9 + -+ + nx, + i = n, and max{0,i — k + 1) + z511 +
2xp10+ -+ (n— k), = .

Its mean is

E(Myp)=(n—k+1)p"n>k (5.5)

Makri and Philippou (1994) introduced and studied non-overlapping and overlapping
circular success runs of length kN, and M¢, in n iid trials and derived their pgfs and

means. Their means are

c 1 —anT_le ni o,
E(N 1) = ngp" <W m pt, n>k (5.6)
E(MS ) =np*,n >k (5.7)

See, also, Charalambides (1994) and Koutras et al. (1994).

Hirano and Aki (1993) studied the number G, ;, of success runs of length greater than
or equal to k deriving its pgf, mean and variance (see also Mood (1940)). Its mean in the
iid case is

E(Gux) = [+ (n— k)alp®,n > k (5-8)
For x =0,1,--- ,[(n+1)/(k+ 1)], Museli (1996) derived the following simple formula for
its pmf in the iid case

L)
P(Gur=12) Y ()" <m> P 1[<”m‘_”§k>+q<”;lmk>] (5.9)

Makri, Philippou and Psillakis (2007a) derived another simple formula for the pmf
of Gy and gave an alternative simpler derivation of its mean. They also studied the
number Gf%k of circular success runs of length greater than or equal to k, deriving its pgf
and mean. Its mean is

E(Gfx) =", E(Gy ) = p" + nap®, n>k+1 (5.10)



Han and Aki (2000) introduced the number of - overlapping success runs of length k
in n trials and derived its pgf in the iid case, as well as when the trials constitute a higher
order Markov chain. See also Aki and Hirano (2000) and Antzoulakos (2003).

Makri and Philippou (2005) reconsidered the number of l-overlapping success runs of
length £ in n Bernoulli trials, say N, (0 <1 < k—1), and derived its pmf and its mean.
The mean is

Ln71
E(Ny ) = ZZ{an—z—J( DD, nzk (5.11)

which reduces to (5.3) and (5.5) for I = 0 and k — 1, respectively. They also derived the
pmf and the mean of the circular number of [-overlapping success runs of length £ in n
Bernoulli trials, say N, (0 <! <k —1). The mean is

n

n—1-—1
E(N;; 1) = nap* (Wk—w> + L= " n>k (5.12)

1—pi—

which reduces to (5.6) and (5.7) for I =0 and k — 1, respectively.
For further generalizations of this section and related work, we refer to Sen etal. (2006),
Makri etal. (2007a, 2007b), Eryilmaz (2008), and Dafnis etal. (2010, 2012).

6 An Application in Reliability - Exact Formulas for Linear
and Circular Systems

A linear (circular) m—consecutive —k— out of —n : F system, due to Griffith (1986),
consists of n components ordered on a line (on a circle). The system fails if and only if
there are at least m non-overlapping runs of k£ consecutive failed components.

Makri and Philippou (1996) derived four exact formulas for its reliability R;(p;m, k,n)
(Rc(p;m, k,n)), as a direct consequence of the binomial (circular binomial) distribution
of order k. In fact, if N,’; ;. is distributed as binomial of order k with parameters n and ¢,
then

m—1
Ri(p;m, k,n) = P(Np = z)
::Ol X 1+t rpt2x P S o1
el )0
where the inner sum is taken over all k-tuples of non-negative integers x1, xs, ...,z such

that x1 + 2z9 + --- + kxp + ¢ = n — kx, by the definition of the reliability of the system
and (5.5). See also Philippou (1986) for m = 1.

The formula for the reliability of the circular system stated next is not given explicitly
since we have not stated the respective formula for the circular binomial distribution of
order k in Section 5. We note, however, that if N, , is distributed as circular binomial of
order k with parameters n and ¢, then

Rc(p; m, k?”) = Z P( rczjkk: = .%') (62)



by the definition of the reliability of the system.
For related reliability results until the time of their publication, we refer to the paper

of Philippou (1986) and the book of Kuo and Zuo (2003).
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Abstract : The Fibonacci and Lucas numbers are briefly introduced and their re-
lationship to the golden mean and the geometric distribution of order k is presented.
Three gambling systems are also touched upon, as well as the odds in some odd-even
games.

1 Introduction

Leonardo Fibonacci (c.1175-¢.1240) was born in Pisa, Italy, but had a Muslim teacher
in sea side Bugia of what is to day Algeria when his father was a customs officer there.
He studied and travelled extensively in the Mediterranean, becoming one of the best
mathematicians of the Middle Ages [Eves (1990)]. In 1202 he introduced the Hindu-
Arabic numerals to Europe with his book Liber Abaci (Book of Calculation), which also
includes his rabbit problem.

The numbers 1,1, 2, 3,5, 8,13, 21, 34, 55, 89, - - - , formally defined by the recurrence relation

Fy=1,F,=1,Fy2=Fy1+ Iy, n=>1, (11)

have been named Fibonacci numbers by nineteenth century French mathematician Edouard
Lucas to honor Fibonacci.

We now know, however, that the Fibonacci numbers have been known before Fibonacci
by Indian scholars who had been interested in rhythmic patterns formed from one-beat
and two-beat notes or syllables.

The astronomer Johann Kepler rediscovered them in 1611, and since then several renowned
mathematicians, including J. Binet and E. Catalan, have dealt with them. Lucas studied
Fibonacci numbers extensively, and the sequence 1,3,4,7,11,18,29,47,76,123,199,--- |
formally defined by the recurrence

L= 17L2 = 37Ln+2 = Ln+1 + Lna n > 17 (12)

bears his name.

During the twentieth century, interest in the Fibonacci numbers and their applications
rose rapidly. In 1961 Vorobyov published his Fibonacci Numbers, and Hoggatt, Jr., fol-
lowed in 1969 with Fibonacci and Lucas Numbers. Meanwhile, in 1963, Hoggatt, Jr. and
his associates founded The Fibonacci Association and started publishing The Fibonacci
Quarterly. Finally, in 1984, the First International Conference on Fibonacci Numbers
and Their Applications was held in Patras, Greece, and the Proceedings were published
by Reidel. The Second was held in Santa Clara, California, in 1986, the Third in Pisa,
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Italy, in 1988 (one every two years in Europe and the USA, respectively), and so on. The
Proceedings have been published by Kluwer until 2004 and by a new publisher thereafter.
See, for example, Philippou, Bergum and Horadam (1986, 1988).

The Fibonacci numbers appear in sunflowers, pineapples, and phyllotaxis. They appear in
geometry and architecture, in computer science and probability theory, in gambling. The
scrambled version 13,3,2,21,1,1,8,5 of the first eight of them appears in The Da Vinci
Code, a novel by D. Brown (2003) which is also a well known Hollywood film.

2 The Rabbit Problem

The rabbit problem which appears in Liber Abaci is trivial and may be stated as follows.
On January 1, there is a pair of adult rabbits in an enclosure. This pair produces one
pair of baby rabbits on February 1%, and one pair of baby rabbits on the first day of each
month thereafter. Each baby pair grows to be an adult pair in one month, and produces
a baby pair on the first day of the third month of their life as well as on the first day of
each month thereafter. Find the number of pairs of rabbits in the enclosure a year later
on January 1%¢ after the day’s births.

Counting them, or otherwise, the number of pairs of adult rabbits is A;3 = 233 = Fi3,
the number of pairs of baby rabbits is Bi3 = 144 = Fip and the total number of pairs of
Rabbits is Ti3 = A3 + B3 = 377 = Fi4 = Fi9 + Fi3,

3 The Golden Mean (or Golden Ratio, Golden Section, Di-
vine Proportion)

According to Euclid’s Elements (ETOLX%O[ in Greek) ”A straight line is said to have been
cut in extreme and mean ratio when, as the whole line is to the greater segment, so is the
greater to the less.”

Suppose we want to divide a line segment AB into two line segments AS and SB so that

B _ s
AS  SB
Setting z = AS/SB, we get
m:wzuizul iff 22—2—-1=0
AS g—g T

The equation 2 — 2 — 1 = 0 has the roots

a= <1+\/5> —1.61803..., A= <1_\/5> = —0.61803....

2 2

The first, denoted here by «, even though it is usually denoted by ¢ in honor of the Greek
sculptor Phidias (qSeuS[oz( in Greek), has been called golden section, golden ratio, golden
mean, or divine proportion, since it is associated with our perception of beauty. The
numbers « and 3 are irrational.

A geometric construction of S given the line segment AB can be done as follows.
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1. Construct a perpendicular BC' at point B, with BC half the length of AB. Draw

the hypotenuse AC.

2. Draw an arc with center C' and radius C'B. This arc intersects the hypotenuse AC

at point D.

3. Draw an arc with center A and radius AD. This arc intersects the original line

segment AB at point S. Point S divides the original segment AB into line segments

AS and SB with lengths in the golden ratio.

4 Two Results Relating the Fibonacci Numbers and the

Golden Mean

Proposition 4.1. The ratios of consecutive Fibonacci numbers converge to the golden

mean or divine proportion

Fn+1 <1+\/g
T 2

n—oo

) =1.61803---

Proof. Let x,, = Fp,41/F,,n > 1 Then

.%'1:1, 1‘2:2, .%'3:3/2, 1‘4:5/3 1‘5:8/5 1‘413/8,---

which indicates (and it may be proven so) that x,, converges to a positive number, say x.

Consequently,

r= lim x, = lim
n—oo n—oo

(Fn+Fn1

o ) by (1.1)

1 1
= lim <1+< >>:1+—ifandonlyifm2—x—1:0
n—o0 Tn—1 X

which establishes the proposition,since the positive root of 22 —z — 1 =0 is .

The Binet formulas to which we turn now provide the following closed expressions for the

Fibonacci and Lucas numbers

O

Proposition 4.2 (Binet Formulas). Let o be the golden mean and § =1 — a.. Then

an_ﬁn

a—pf"

Proof. Since o and 3 are roots of z? —x — 1 = 0, it follows that

F, = n>1, Ly,=a"+8"% n>1

o =a+1, =p+1

Multiplying each side of the two equations by o, 5", respectively, we get

an+2 — anJrl + o /8n+2 — ﬂnJrl + ﬂn
7

15

(4.1)

(4.2)



which imply

n+2 _ on+2 n+1l _ gn+l n _ Aan
« I3 o« I53 +oz 15}
a-f a-p a—p"

and
an+2 + ﬂn—f—Q _ an-‘rl + ﬂn-f—l 4 a” + /8"7 n > 1’ (44)

We show now the first Binet formula. Setting U,, = (o™ — ")/(a — ), n > 1 it suffices to
show that U, satisfies the defining relationship of F,. It does, since Uy = (a—pf)/(a—p) =
1L, Uy=a+pB=1and Uyy2 =Upt1 + Up, n > 1 by (4.3)

We next show the second. Setting V, = o™ 4+ ™, n > 1 ,it suffices to show that V,
satisfies the defining relationship of L,,. It does, since V; = a+ 8 =1, Vo = o + % =
a+B+2=3by (4.1)and V190 =Vy41+ Vy, n>1by (4.4) O

5 A Few Fibonacci Identities

The following identities may be established by induction on n.

n
Y Fi=Fya—1 n>1 (5.1)
i=1
n
> PP =F,Fn+1 n>1 (5.2)
=1
Fy1Fpp — F2 = (-1)" n>1 (5.3)

[n/2] .
Foyi= Y <” . Z) n>1 (5.4)

=0
F,L, = F5, n>1 (5.5)
We give an even easier proof of the first.
Proof. of (5.1) By means of the definition of the Fibonacci numbers, we have for n > 1

n n
SR =Y (Fio—F1 = (B~ E) + (Fi— F) + -+ (Faga — Fog1) = Fopo — 1
i=1 i=1

O

6 Infinite Series and Fibonacci Numbers
i Ig_Fli1 =a-1 (6.1)
i P}Q = _2\/5 (6.2)
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Proof. The second is due to Millin (1974), a high school student at that time (see also
Good (1974)). We prove the first. In fact, we have by (5.3) and Proposition (4.1) as
n — 00 O

. -1 Zn: F, 1Fy1 — F? _ . <Fz’+1 R > _ B
" FiF; 4 —\ Fi Fi 4 E,

—1—a-—1
i=2

7 Probability and Fibonacci Numbers - The Geometric Dis-
tribution of Order k

Toss a fair coin until a head (H) appears two consecutive times. Denote by F, the event
that this will happen at the n — th tossing. What is the probability of E,, say P(E,)?
What if the coin is not fair? What if the unfair coin is tossed until H appear k consecutive
times?

For n =2, Ey = {HH}. Therefore

P(Ey) = PUHEN = (3) () =5 =5
For n = 3,E3 = {THH}. Therefore
o < rirmn = () (1)) -

Forn=4,E, ={HTHH,TTHH}. Therefore

1 1 F3
P(E3) = P{HTHH},{TTHH}) = it 5i = o
In general, it can be proven that
F,_

In fact, much more can be shown, the following.

Theorem 7.1 (Philippaou and Muwafi(1982)). For any positive integer k, denote by T
the number of independent trials with success probability p(0 < p < 1) until the occurrence
of the k' consecutive success, and set ¢ = 1 — p. Philippou and Muwafi (1982) found that,
forn=kk+1,---,

fi(n) = P(Ty =n) = Py (n - nk) ()™

S PEERI (7

and 0 otherwise, where the summation is taken over all k-tuples of non-negative integers
ni,Ng, - ,ng such that ny + 2,9+ -+ knp =n — k.

Proof. 1t is based on the observation that a typical element of the event (T}, = n) arrange-

ment is an

A= T1T2, - ,xn1+n2+...+nk55, s S(]CS/S),
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such that n; of the 2’s are By = F, ny of the 2’s are Fy = SF,--- ,n; of the 2's are
E,=8S---SF(k—15's), and ny + 2ny + -+ + kng = n — k. Fix ny,--- ,ng. Then the

number of the A’s is
ny+---+ng
ny,--,Ng

and each one has probability

Therefore,

ce ni4-4n
P(all A’s:)n; > 0 and fixed,0 <i<n)= <n1 Tt nk) P”(%) ' g

ny, -, Nk
But the non-negative integers nq,no, - -+ ,ng may vary subject to the condition ni + 2ny +
-+« 4+ kng =n — k, and this completes the proof of the theorem. O

To Theorem (7.1), we have the following corollary.

Corollary 7.1 (Philippou and Muwafi (1982)). . Let T} be as in Theorem (7.1) and
assume that p = 1/2 Then

)
P(Tk:n)zngink+1 n>k
and
F,_
P(Ty =n) = ;“ n>?2

)

where F, is the n'" Fibonacci number, and F,(Lk is the nth Fibonacci number of order k.

Proof. 1t follows from Theorem (7.1) for p = 1/2, since F? = F,, and
k) ny -, ng

where the summation is taken over all k-tuples of non-negative integers ny, nsg, - - - ,ny such

that nq+2ngo+- - -+ kng = n [Philippou and Muwafi (1982), Philippou (1983)]. The above
(k) .
formula for F,’; generalizes (5.4)
Is fr(n) a proper probability mass function?

The answer is yes, by means of the transformation

and the multinomial theorem. O
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Theorem 7.2 (Philippou, Georghiou and Philippou (1983)). Let fi(n) be as in Theorem
(7.1) Then

e}

Y feln)=> P(Tih=n)=1
n==k n=~k

The probability generating function (pgf) of T, say gx(s) and hence its mean ui and
variance ai are

(1 —ps)phs*
1 — 5+ gpksktl’

2
M = , O =
qpk k q2p2k

sl <1

gi(s) =Y " fr(n) =
n=k

They named the distribution of 7T} the geometric distribution of order k& with parameter
p, since for k = 1 it reduces to the geometric distribution with pm f

fi(n) = ¢"'p, n>1

A different derivation of gi(s) was first given by Feller (1968). Alternative simpler formulas
for calculating fx(n) have been found. The following recurrence, for example, is very
efficient.

Theorem 7.3 (Philippou and Makri (1985)). let fx(n) be the probability mass function
of Tj.. Then

fr(k) = p", fr(n) = gp”, k+1<n<2k
fk(n):fk(n—l)—QPkfk(n—k—l), n>2k+1

8 Probability, Fibonacci, and Gambling

There are two well publicized cases of individuals who beat the casinos and won themselves
quite a lot of money. There are also many who won once or a few times. Millions, however,
lose on the average every day. That is why casinos exist and thrive. The following three
systems of gambling enjoy some popularity among gamblers.

(a) Double your bet system. In any game of chance you start by betting (say on
red in American roulette) a certain amount of money, say A dollars. If you win, you
stop. If you lose, you double your bet by wagering 2A dollars. If you win, you stop.
If you lose, you bet 4A dollars, and so on. It appears that the system is unbeatable
earning you A dollars when you win and stop, but it is not. Pretty soon you may
end up not being able to double your bet for lack of money, or you may reach the
upper limit posed by the casino. Either way you are a loser.

(b) The Fibonacci system. It resembles the double your bet one, but it is less ag-
gressive. In any game of chance you start by betting (say on red in the American
roulette) a certain amount of money, say A dollars. If you win, you stop. If you
lose, you bet A dollars again. If you gain, you are at the beginning. If you lose,
you bet 2A dollars. If you win, you are at the beginning. If you lose, you bet 3A

19



dollars, and so on, moving one step to the right through the Fibonacci sequence
1,1,2,3,5,8,13,21,34,55,--- , when losing and two steps to the left when winning.
As in the double your bet system, you may end up pretty soon without money.
Moreover, one win is not sufficient to win you money, unless this happens at the first

time.

(c) The d’Alembert system. According to this system, in any game of chance (say
the roulette) you increase or decrease the amount of your bet in a round, depending
on whether you lost or won the previous round. The “logic” is that if you lose one
round, you are more likely to win on the next, and you should increase the amount
of your bet. But this is completely erroneous. In a game of chance, say the roulette,
the outcome of any spin is independent of the outcomes of previous spins. The odds

at the roulette are always the same.

9 The Odds in Some Odd-Even Games [Schuster and Philip-
pou (1975)]

In tossing an unbiased six-sided die until a six appears, is the best bet “odd” =1,3,5,---
or “even” = 2,4,6,---7 What if the die is biased ?

The answer is given in the following

Theorem 9.1 (Bernoulli Odd-Even Game). In an odd-even game of counting independent
Bernoulli trials with constant positive success probability p(¢ = 1 —p) until the occurrence
of success, the best bet is “odd”, since

q—1
qg+1

q

’ “aven”) — p(“odd”) =
4 p(eeven”) — p(*odd")

p (“even”) =
In counting the number of phone calls arriving at the switch board of Mohandas College
of Engineering and Technology (or Kerala University or All Saints College) on December
16, 2013, is the best bet “odd” =1,3,5,7,--- or “even” =0,2,4,6,---7
The answer is given in

Theorem 9.2 (Poisson Odd-Even Game). In an odd-even game of counting the number
of occurrences of an event in positive time t following the Poisson distribution with mean
rate At the best bet is “even”, since

1 —2)\t
P(“even”) = <++> , P(“even”) _ P(“Odd”) — e—2)\t
1+ (45)
q—= v
P (“even”) = fq“ P(“even”) — P(“odd”) = <_Z - 1>

Let one think that life is always so simple, consider the following generalisation of 1,
which is a Sucker bet.

In tossing an unbiased six-sided die until a “six” appears r times, is the best bet
“odd” = 1,3,5,... or “even” = 2,4,6,...7. What if the die is biased ? The answer is

based on,
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Theorem 9.3 (Negative Binomial Odd-Even Game). In an odd-even game of counting

the number of successes in n independent Bernoulli trials with positive success probability

p until the occurence of the " success, the best bet is “odd” or “even” providing r is odd

or even respectively since,

P(“even”) = (H(q%) P(“even”) - P(“Odd”) = (q - p)n
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1 Introduction

The historical development of mathematics shows its dual nature as an abstract system of
logic and as a practical science applied to concrete problems. Most of the abstract ideas
in mathematics have their roots in physical problems and many purely aesthetic devel-
opments of mathematics have later found to have practical applications. Unfortunately,
the mathematics curriculum from schools to universities in our country is heavily biased
towards pure mathematics, with little emphasis on past needs and current applications.
This makes mathematics a meaningless manipulation of symbols for the students of pure
mathematics and a mechanical application of formulas for the students of other sciences
and technology. In this talk, I try to trace the historical development of some of the
ideas in mathematics, emphasizing the dialectics between theory and application and also
indicate how this can be used for a more meaningful pedagogy of mathematics, taking

geometry as an example.

2 The nature of mathematics

Mathematics originally was a study of various measurements and the relations between
such measurements, using numbers. This view of mathematics prevailed as late as the
eighteenth century, as evidenced by the words of Euler:

Mathematics, in general, is the science of quantity; or, the science which in-
vestigates the means of measuring quantity

But even from olden times we note the study of physical measurements evolving into the
study of pure numbers per se.

For example, the need for checking perpendicularity, of poles for a tent or walls of
a building must have been felt at least as early as the sixth millennium BC, when man
started to construct his own dwellings, perhaps as a result of large scale agriculture. Even
as early as the second millennium BC, it has been known in various parts of the world that
perpendicularity can be quantified using the three numbers 3, 4, 5:
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This must have led to the investigation of other number triples which can characterize
perpendicularity, ultimately resulting in the Pythagoras Theorem, which is proved in Eu-
clid’s Elements, of the third century BC. But then apart from the utility of such numbers
in determining perpendicularity, there must have been number-theoretic investigations of
such such number triples, since we find a characterization of such triples in Diophantus’
Algebra, in the third century CE. We then have Fermat making his famous conjecture in
the seventeenth century that no cubes or higher powers of two integers add up to a like
power of an integer. And many mathematicians all over the world devoting their lifetime
to solve this problem for well over three centuries with Andrew Wiles succeeding in 1994.

Thus we see a physical problem translated into numbers and then moving on to purely
number theoretic problem of little or no practical significance. Studies on this problem
has given to highly abstract theories such as that of elliptic curves, but then we now hear
of elliptic curve cryptography, a practical application in computers.

Other results in number theory also have found applications in computer related cryp-
tography. For example, consider the following theorem of Euler, which generalizes a result
of Fermat:

Theorem 2.1. If n is a natural number and @ has no common factor with n, then a?(™
divided by n gives remainder 1

Here ¢(n) denotes the number of natural numbers less than n and having no common
factor with n, other than 1. This theorem is the basis of what is known as the RSA
cryptosystem, invented by Rivest, Shamir and Adleman in 1977. To explain this, suppose
a number m (message) is to be send from a computer to a computer B. To do this in such
a way that no other computer listening in can get m, it has to be encrypted. This is done
as follows:

(a) B computes the product n = pq of two large primes p and ¢
(b) And two numbers e (encryption) and d (decryption)such that

(a) e and d are smaller than n and have no common factors (other than 1) with n

(b) The product ed divided by ¢(n) gives remainder 1
(c) Sends n and e to A

(d) A computes the remainder ¢ (cipher) on dividing m¢ by n and sends to B
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(e) To retrieve m, B computes the remainder on dividing ¢? by n

This works because, by construction
de = ko(n) + 1

so that
(m) = (¥

Now since ¢ is the remainder on dividing m¢ by n, it follows that ¢¢ divided by n gives the
same remainder as the remainder got on dividing (m€)? by n; and by the above equation,
this is the remainder on dividing (m¢("))km by n. By Euler Theorem, the remainder on
dividing (m¢("))k by n is 1 and so the remainder in question is just m.

The effectiveness of this idea depends on the following. For very large numbers n, it is
not easy to compute ¢(n), even for powerful computers. But then if n = pq, where p and
g are primes, it is not difficult to show that ¢(n) = (p — 1)(¢ — 1). So, in the computer
B can easily compute ¢(n). But a third computer listening in, gets only the numbers n,
e and c¢. To get m, it has to find d and for this it has to compute ¢(n). But then this
requires the factors p and ¢ of n, which is not easy to compute. For example, to generate
a 140-digit number as a product of two primes requires only a few seconds, even for a
personal computer; but to factorize it back may require hours or even days, even for a
super computer.

Mathematicians of the early days like Fermat, Euler or Gauss were concerned with
both mathematical problems arising from physical situations and abstract mathematical
problems arising from number theory and pure geometry. However By nineteenth century,
the division between pure and applied mathematics became rather sharp. Thus we have
L. E. Dickson, a famous number theorist of the nineteenth century exclaiming:

Thank God, number theory is unsullied by any application!

But then this is what Donald E. Knuth, a mathematician who is more famous as a com-
puter scientist, says about number theory in the twentieth century:

Virtually every theorem in elementary number theory arises in a natural, mo-
tivated way in connection with the problem of making computers do high-speed
numerical calculations

As mentioned above, the dialectics of the evolution of mathematics is such that what is
originally seen as pure mathematics often leads later to unforeseen applications.

3 Teaching geometry

History often provides a good framework for teaching mathematics, starting with the orig-
inal physical problem which mothered a concept, its evolution into a purely mathematical
concept and then its later application in new physical contexts. This may provide the
much needed motivation for studying the concept. Such a scheme also helps to maintain
continuity of the mathematics curriculum across different stages of education and to es-
tablish connections both within different topics of mathematics and with other subjects of
the curriculum. In this section I briefly sketch how this can be done in teaching geometry.
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Let us start with the notion of congruency of triangles. We start with a tale of Thales
in the sixth century BC in Greece. It is told that he was asked by the king to measure the
distance of a ship moored at sea from the shore. This is how he is said to have done it.
He first erected a pole at water’s edge directly in line with the ship. He erected another
pole on the shore some distance away from the first and finally a third pole exactly at the
middle of the first two. Then he walked back from the second pole, perpendicular to the
shore and keeping the ship in sight. He marked the position where this pole came into the
line of sight with the ship.

In the figure above, S is the ship, Py, P», P3 are the poles in order and T is the final position
of Thales. Thus Thales ingeniously flips the triangle SP; Ps at sea onto the triangle TP, Ps
on land, so that he can measure SP; as T Ps.

This tale can induce a discussion on the conditions under which the sides and angles
of two triangles, thereby leading to the idea of congruency. After establishing the fact
two triangles with equal lengths for sides also have their angles equal, we can discuss the
rigidity of triangular frames; a quadrilateral frame for example, can be deformed without
bending the sides, but not a triangle:

And this is the reason why bridges, towers and roofs are built with triangular frames,

The fact that triangles with sides of same length have angles of the same size leads to
the theoretical question whether the converse is true. On seeing this is not so, the problem
is to see what the relation between the sides is in this case. The idea that right triangles
with the same angles have sides of the same ratio can be illustrated again through the tale
of another exploit of Thales. It is said that Thales calculated the height of an Egyptian
pyramid by measuring its shadow against the show of his staff. This is how Plutarch, a
Greek historian of the first century CE recounts the tale:

without trouble or the assistance of any instrument merely set up a stick at
the extremity of the shadow cast by the pyramid and, having thus made two
triangles by the impact of the sun’s rays, ... showed that the pyramid has to
the stick the same ratio which the shadow has to the shadow
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This means that in the figure above, PD : SF = DT : TF and so

PD = DT x SF
TF
A discussion on this leads to the idea that any triangles with the same three angles have
sides of the same ratio and thus to the idea of similarity.
As a practical application of the idea of similarity, we can derive a result in optics
describing the relation between focal length of a lens and the distances from it to the
object and image:

In the figure above, ACIM and ACOB are similar so that 3 = é—]\g and AFIM and
AFCA are similar, so that % = % = IO—]‘é. Equating the expressions on the right side

of these equations and simplifying, we get

1 1 1

+
u v f

The facts that the sides of a triangle determine its angles and angles of a triangle
determine the ratio of its sides leads to the theoretical question of actually determining
these. This leads to trigonometry. After introducing the various trigonometric ratios, it

can be shown that the angles are determined by the sides according to the rules

B2 4 2 — g2 24— b2 a2+ — 2

cosA:; cosB:; cosC:;

2bc 2ca 2ab

and that the angles determine the ratio of the sides as
a:b:c=sinA:sinB:sinC

It is also interesting to note that the concept of the sine of an angle arose in astronomy,
not for measurement of triangles, but for determining the chord of a circle in terms of the

arc subtending it:
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Using this idea, the Persian scholar Abu Rayhan al-Biruni computed the radius of the
earth in the first millennium CE by first computing the height of a mountain using the
angle of elevation and then measuring angle of depression from the top of the mountain

to the horizon:

From the figure on the right, we find that cosa = 7 and so
hcos «
r=---——
1 —cosa

A modern application of trigonometry on computing the height of lunar mountains using
satellite photographs can be found at http://stupendous.rit.edu/classes/phys236/
moon_mount/moon_mount.html

A discussion on trigonometry must include the question of how these values are actually
computed. Some of these values can be computed using results from Euclidean geometry,
as Claudius Ptolemy of Egypt did in the second century CE. But a generic method was
found by Madhavan of India in the fourteenth century:
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Translated into modern terminology, this gives

N[

sinx:x—%x3+éx5—%x7+---

which was rediscovered by Newton in the seventeenth century.

An interesting offshoot of Madhavan Series is that it converges for all real values of =z,
whereas, sin z defined using circles is meaningful only for 0 < x < %71. Thus from its origin
as a geometric measurement, sine becomes an algebraic (or analytic) function defined on
real numbers.

The invention of analytic geometry in the seventeenth century gives a geometric form
to the sign function again, as a wave:

This has made the sine function particularly useful in the study of periodic phenomena
in physics, such as simple harmonic motion. Again, the studies on vibrating strings and
transmission of heat in the nineteenth century led to the theory of approximating all
periodic functions in terms of the sine and cosine series and to Fourier Series.

The invention of analytic geometry is a revolution in mathematics, providing a trans-
lation scheme between algebra and geometry. The problems of determining tangents to
curves and computing areas bounded by curves contributed much to the development of
calculus and later to mathematical analysis. It is rather unfortunate that most books
on analysis for college courses ignore the geometric motivation of the ideas involved. For
example, almost all of them take the so called least upper bound azxiom for completeness

of the real numbers, instead of the original Dedekind axiom:
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if the set of real numbers is split into two non-empty sets such that every
number in one set is less than every number in the other, then either the first
set contains a least number or the second set contains a largest number

which can be easily understood as a rigorous set-theoretic formulation of the intuitive
geometric idea of real numbers as points on a line (or in other words, lengths of line
segments).

It maybe argued that geometrical arguments are not precise enough by the current
standards of mathematical rigor, but there is no denying the fact that it is a great ped-
agogical tool, providing meaning and motivation for great many concepts; and dynamic
geometry softwares (such as the free software GeoGebra) has raised this to a whole new
level.
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Abstract : We review few of the well known techniques in image processing using
mathematical modeling. We mainly concentrate and illustrate some of the results
available in literature for image processing using partial differential equations. Finally
we present few recent results for texture in painting in images.

1 Introduction

Images can be seen as the best way of communication without boundaries of languages.
For example, to say that one can not take a ”U” turn at a particular point on the road,
instead of explicitly writing it in some language, one image would serve the purpose. This
explains the necessity and importance of images. The technological advancements have
improved imaging techniques and quality and nature of images. Today digital images
have encompassed each and every corner of our life. Family pictures taken using ordinary
cameras, medical images taken using various techniques like magnetic resonance imaging
(MRI), images taken by satellites using infra red cameras are few types of them. Images
of family and friends are taken for pleasure. Images in medical field help in detecting,
localizing and analyzing the diseases and can be helpful to decide the course of medical
help to be provided to the patient. Satellite images help in prediction of weather, to
quantify changes in vegetation, sea level, forest cover and to design remedial measures.
Many a times images captured by cameras can not be used as they are and some
transformations need to be done on them to extract useful information from them. Images
captured may contain some undesired information called noise or missing data due to loss of
information during transmission or because of limitations in the imaging techniques. Some
times end user is interested only in particular part of the image or is interested in analyzing
and comparing certain parts of similar images. All these problems and requirements
need to be tackled using computational assistance. Digital image processing is the use of
computer algorithms to perform processing on digital images to extract useful information.
But what does a digital image mean and how it can be represented mathematically?
A digital image is a numeric representation of a real image. Idea is to put a regular grid
on an image and assign a digital value to each square on a grid say average brightness in
that square. Each square on a grid is called a ”pixel” which stands for picture element.
In general representation of a black and white or gray scale image as it should be called
appropriately, each pixel value varies between 0 and 255; 0 for black and 255 for white.
Another important characteristic of an image is its size or resolution which is nothing
but number of rows and columns in the grid used to digitize the image. Thus from a
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Figure 1: Image Rotation by 45 degrees around center of the image

mathematical view point any matrix which has integer values lying between 0 and 255
will represent a gray scale image when displayed on a computer. For colour images, each
pixel is assigned with three intensity values each one representing red, green and blue level
in the image. These values together would represent a colour or RGB image. Thus gray
scale image is two dimensional array whereas to represent colour image we require three
such two dimensional arrays.

Suppose one needs to increase brightness of a gray scale image. Simplest operation,
keeping in mind that image is a 2D array would be to add a fixed value say b to each
of its values. If b is strictly positive, intensity value at each pixel would increase and we
will get brightened image. Similarly if one needs to rotate the image we can use matrix
rotation operation to achieve this. For example suppose we need to rotate the image by
a an angle « counterclockwise around origin. This means a point (x,y) in the original
image is mapped onto a point (X,Y’) in the resultant image. Where relation between these
points is given by:

X =xcosa — ysina (1.1)

Y =zsina+ ycosa (1.2)

Figure 1 illustrates the numerical implementation of rotation around center of the image
by an angle of 45 degrees.

Thus we have seen that using the array representation of an image we can do simple
processing to get a new image. But many a times more complicated and involved opera-
tions must be done to extract useful information from images. Various image processing
problems are broadly classified and explained briefly below.

e Image enhancement: In image enhancement, the goal is to accentuate image fea-
tures for subsequent analysis or for image display. Image defects which could be
caused by the digitization process or by faults in the imaging set-up (for example,
bad lighting) can be corrected using image enhancement techniques. For exam-
ple problems like contrast and edge enhancement, pseudo coloring, noise filtering,
sharpening and magnifying come under image enhancement.. It is useful in feature
extraction, image analysis, and visual information display.

e Image segmentations: Segmentation procedures partition an image into its con-
stituent parts or objects. This partitioning depends on the user requirements and
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problem can become extremely difficult depending upon image content. A segmenta-
tion could be used for object recognition, image compression, image editing, removal
or revival of various portion in an image/video.

e Image restoration: It comprises removal or minimization of known degradation
in an image. This includes deblurring of images degraded by the limitations of a
sensor or its environment, noise filtering, and correction of geometric distortion or
nonlinearities due to sensors.

e Image reconstruction: Image reconstruction from projections is a special class
of image restoration problems where a two (or higher) dimensional object is recon-
structed from several one dimensional projections.

e Image in painting: Image in painting deals with filling in missing information in
an image. In painting must be done in a plausible way which is undetectable for
human eye.

2  Modeling image by PDE

As we have noted digital image is discrete information of intensity values arranged in an
array. But actual image which is perceived by us is continuous variation of intensity values.
In an image, boundary of an object would describe sudden changes in intensity values.
Gradient of intensity represents variation in intensity values and large gradient values
would define the boundaries of objects in the image. Thus real image can be modeled as
piecewise continuous function from connected subsets of 2 or 3 dimensional space. This
motivates to look at the image as a solution of partial differential equations (pde). We
would look at the solution of PDE in weak sense so as to recover the discontinuities.

Let us look at a restoration or noise removal problem. Let us assume that image
is represented by ug. We would like to denoise and obtain the denoised image which is
denoted by u. Thus we can write ug = Ru +n where n represents noise component and R

is a linear transformation. We would be able to recover v if we minimize the functional
F(u) = / | Ru — up? (2.1)
Q

By using calculus of variation, this minimization problem can be converted to PDE. Solving
this PDE numerically would give us our required u. But in general such minimization
problems are ill posed and one can not find a solution which depends continuously on
initial data. We therefore regularize the functional which we wish to minimize. Thus

instead of solving problem (2.1), we solve another minimization problem given by

it ([ |Ru =l + [ o(9u)) (2.2

Where ¢ is a smooth function and A > 0 is a weight factor . First term on RHS in 2.2 is
a fidelity term and second term is a smoothing term. Above minimization problem gives
rise to a well posed pde. Thus we look for best solution u which fits given data, whose
gradient is low and noise is removed. The example of restoration using above method is
presented in figure 2.
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Figure 3: Denoising the image using diffusion equation

Instead of following above methodology, we may also like to look at the image as a
solution of a PDE. Let us take the simplest diffusion equation or heat equation as model
for image. Taking given image as a initial value we can then solve

%(t, x) — Au(t,z) =0 (2.3)

Here ug is given image and we seek u which is a solution of above equation as denoised
image. As we know solution of heat equation is given by convolution with Gaussian kernel,
the solution u would be smoothened out version of ug. This does remove noise from
original image, but boundaries of different objects are also smoothened out. Numerical
implementation of above equation on the noisy image in Figure 2 is illustrated in Figure
3.

We observe from above figure 3 that edges or boundaries of objects are not preserved
in this denoising thus more finer modeling needs to be done. One such idea is to modify
diffusion equation by weight function. Thus we may solve

% — div(c|Vul) =0 (2.4)

u(0, ) = uo(z)

where ¢ can be smooth or piecewise smooth function or a constant. This is a celebrated
idea of using anisotropic diffusion equation for denoising introduced by Perron and Malik.
3]
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Figure 4: In painting of an image

Above example also emphasizes need to find boundaries of object in the image. As
in the denoising, we would like o treat them differently. As mentioned earlier bound-
aries also play important role in segmentation problem as well as in painting problem.
Finding gradient of an image is one of the way to find boundaries. A vast literature is
available on sementation problems which use various PDE methods. One among them is
solving Neumann and Dirichlet boundary conditions problems simultaneously to localize
the discontinuities [1]

3 Image In painting

In painting is a process of reconstructing lost or deteriorated parts of the image based
on the background information. The term in painting is derived from the ancient art of
restoring paintings by professional restorers in museums. Digital image in painting tries to
imitate this process and perform the in painting of an image in an undetectable way. Image
in painting finds its applications in removal of scratches in an image, repairing damaged
areas in images, recovering lost blocks during wireless image transmission, recovering lost
information while image zooming and super-resolution , removing undesired objects from
an image. Image in painting is applied to remove red-eye, the stamped date from the image
or remove unwanted text from the image etc. An example of in painting by removing text
on an image is illustrated in figure 4.

3.1 In painting images with Texture

In painting can be done using diffusion equation provided the area to be in painted is small
and background information can be smoothly diffused to fill in the missing region. This
may not work for images which have large texture variation. Texture is a measure of image
coarseness, smoothness and regularity. Images with texture contain regions characterized
more by variation in the intensity values than one value of intensity for the given image.
Figure 5 shows two examples of images with different kinds of textures.

In painting an image which has texture variation is a challenging problem. Texture in
painting is tackled by methods which combine PDE and statistical methods. The idea is
to decompose image information in it structure part and texture part. The missing infor-
mation from stucture image is in painted using usual method whereas image in painting
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Figure 5:

Figure 6: Simultaneous structure and texture In painting

in texture part is done using texture synthesis. These two different in painted images are
then superimposed to give a final in painted image. Such an approach is used in [2] and
is illustrated in figure 6.

3.2 In painting using Texture Differentiation

We have another approach to tackle this problem. Instead of segmenting image in structure
and texture we only use texture differentiation of an image. First we segment image in
various textures. then we locate correct texture patch using background information for
missing region. This reduces computational time considerably as we are not looking for
best match in whole of the image. Moreover, we are assured of getting correct texture
as we are looking only in texture segment which matches with background information.
Results of this algorithm on Barbara image are showed in figure 7.

4 Conclusion

We have reviewed few of the important image processing problems and have seen how they
can be formulated using PDEs. We have shown how this can be efficiently used for image in
painting to recover texture in the image. Further work to enhance the results is underway.
We would like to conclude that partial differential equations help is resolving many issues
in image processing. Problems in various fields like medical imaging, satellite imaging,
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Figure 7: Texture In painting using texture differentiation

astronomical imaging can be resolved by applying pde methods. Each one of them has
different goals and intricacies hence modeling that is underlying pde/ methodology to
solve pde needs to be modified accordingly.
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A two dimensional linear system is of the form
T = ax+by
y = cx+dy
where a, b, ¢, d are parameters. This can be expressed as

X = AX (1)

whereAz(a b)andX:<x>.
c d Y

The movement of X = (z,y) in the xy plane (called phase plane) satisfying (1) is
called trajectory.

How the qualitative nature can be analysed, even in the case of systems, where solutions
are available. The method which will be explained in this lecture can be applied even for
system not having analytic solution.

Let us consider, m& + kx = 0, the governing equations of simple harmonic oscillator.
This can be solved in terms of sines and cosines. Generally, it is impossible to solve non-
linear equation in the form of an analytical solution. It is clear that the state of any
system can be characterised by x (current position) and & (velocity). Rename & = y and
the above equation can be written to a system of equations such that

To=y

Yy = _—kx = —w?z with w? = —.

m m
This will assign vector (&, 7) = (y, —w?z) at each point (z,y), which is called a vector field
on the phase plane. To find trajectory at (zg,%0), assume an imaginary particle at the
point and follow as per the equation. The point (z,yo) is called phase point. It is clear
that the phase point at (0,0) is motionless, sin(i,7) = (y, —w?x) = (0,0) which means that
origin is a fixed point. But phase point starting anywhere else circulates around the origin
and eventually return to its starting point. Such trajectories are called closed orbits. The
set of all trajectories in phase space is called phase portrait. We can also directly found
the orbits as follows:
Ccll_j = y and @:—wzx

dt
@ —w*x

dx Y

— Widr+ydy = 0
we? | ¢ tant
—— 4+ = = constan
2 2



This equation represents an ellipse.

and hence the fixed point (0,0) corresponds to state equilibrium of the system. The closed
orbits are periodic motions.

X3

CoAz

X5 »
CiAy -7~

X1

We claim that
X(t) = CleAltXl + CQ@AQtXQ

is the general solution of the system.

Why it is a general solution

(1) We know that eM?X; and e**'X, are solutions of X = AX and hence any linear
combination say
X(t) = CleAltXl + CQ@AQtXQ

is a solution of X = AX.
(2) The solution satisfies X (0) = X, the initial condition.

3) It is the only one solution of the system by existence and uniqueness theorem states
below:

Existence and Uniqueness Theorem

An initial value problem X = f(z), with X (0) = X; has a unique solution X (t) on some
interval of ¢, say, (—a,a) about ¢t = 0 if (1) f is continuous and (2) all partial derivatives

Ofi

T
existence and uniqueness are guaranteed for the problem X = f (x), if f is continuously
differentiable.

are continuous on some open connected set D C R" [where Xy € D]. In otherwords,
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NOTE:

The above theorem says that two different trajectories never intersect. If it intersects there
would be two solutions starting from the same point and hence violate the uniqueness of
the theorem.

NOTE:

In two-dimensional phase space, suppose there is a closed orbit C' in the phase plane, then
any trajectory starting inside C' is trapped inside C' forever.

Limit cycles

In general, linear systems and non-linear systems exhibits closed orbits or trajectory. In
linear systems, if X () is a solution of the system X = AX, So is CX(t) for any C' # 0.
Hence they are never isolated. Also a slight disturbances to the system will persist for
ever. At the same time non-linear systems can have isolated closed trajectory called Limit
cycles. Hence neighbouring trajectories will spiral toward or away from the limit cycle
depending on the structure of the system.

If all neighbouring trajectories approach the limit cycle, we say that the limit cycle is
stable or attracting. Otherwise it is called unstable.

cx(t)

X(t)

As an example, consider the well-known Van der Pol equation;
G4 p(? —1)i+z=0

Historically, the above equation is very important in the nonlinear electrical circuits used
in first radios.

If we numerically integrate the equation for p = 1.5 starting at (x,2 = (0.5,0) at t =0
we will graph as follows.

(@)
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(b)

/\

We can prove that the equation has a unique limit cycle for p > 0. (Later).

Ruling Out Closed Orbits

A system X = F (X) is called a gradient system, if it can be expressed in the form of
X = —VV(X), where V(X) is a continuously differentiable single valued scalar function
called potential function.

Theorem 1. Closed orbits are impossible in gradient systems, (which does not mean that
closed orbits are always possible in non-gradient systems).

Proof. Consider a system & = f(z,y) and § = g(z,y), which is a gradient system.
3 V(x,y) such that X = —VV

— (i,§) = —<@ @) :>[@:—dc & oy
’ ox’ Oy Ox dy
oi 0y
dy ~ Ox

which is the necessary condition for gradient system.
Assume that closed orbit (x(t),y(t)) exists for the system. Hence on one completion
of a cycle with period T', we have

X(0) = X(T) ie (2(0),y(0)) = («(T),y(T))

. V(X(0)) = V(X(T)) = constant (say)
changein V.= 0
vV = 0

dv
Note that, rate of change in V is —.

Hence, change over a period of one cycle is given by,

T
vV = / D g
o dt

/T <3v dr  Ov dy)

= =

o \Oz dt Oy dt
T T

= /(_;'c;'c+—y'y')dt:—/ (@2 +9H)dt <0 (i,9)#0
0 0

which is a contradiction to eqn (2) ((¢,y) =0 = (w,y) is a fixed point). O
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Definition: Let X™* be a fixed point of the system
X = FX)
then a continuously differentiable real-value function V(X)) is called a Lyapunov function,
if
(1) V(X) >0 VX #X*

2) V(X)=0 VX =X*

(3) V(X)<0 VX #X*

Theorem 2. If there is a Lyapunov function corresponding to the system X = F (X),
then the fixed points X* is asymptotically stable. Also no closed orbits there exists.

Example:

Consider & = —x + 4y and § = —x — 1°.
= (0,0) is a fixed point.

Fixed points are given by 2 =0 and y =0

Let V. = 22+4y*>0 V (z,y) # (0,0)
V =0 (z,y)=0
vz Ovdy
Ox dt Oy dt
= 2u(—z +4y) + 8y(—z — ¢°)
= —(222+8yY) <0 V (x,y)# (0,0)

Also V(X) =

.. d no closed orbits.
Note: d no systematic way to construct Lyapunov functions. Devine inspiration is
required for such a construction.

The third method for ruling closed orbits is based on Green’s theorem and known as
Dulae’s Criterion.

Theorem 3. Let X = f(X) be a continuously differentiable vector field defined on a
simply connected subset R of a plane. If there exist a continuously differentiable real-
valued function g(X) such that V. (g(X)X) has one sign through out R, then there
exists no closed orbits lying inside R.

Proof. Let C is a closed orbit lying entirely in the region, R. Let A denote the region

inside C, then by Green’s theorem, we have

dl R
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/A/V' (g(X)X>dA = jéc(g(X)X).ﬁdl
= fc g(X) (X .iM)dl

where 77 is the outward normal and dl is the element of arc length along C. Since C' is a
trajectory on R2, the vector X is the tangent vector and 7 is orthogonal to it and hence

X = 0 everywhere.

/A/V.(g(X)X)dA

which is a contradiction, since V.g(X )X has one sign throughout R.

0

d no closed orbits lying inside R. U

Example: & = 2(2—x—y)and g = y(4x—22—3) has no closed orbits for z > 0, y > 0.
1
Take g(X) = — is continuous for z > 0, y > 0.

Ty
. 0 . 0 .
V(X)X = %(Q(X)w)Jra—y(g(X)y)
L)l (1)
or \y vy Y T
-1
= — <0 for y>0
Yy

.. By Dulae’s criterion, 3 no closed orbits in the first quadrant.

NOTE:

This has also the same drawback of Lyapunov method.

Theorem 4 (Poincare - Bendixson Theorem). Let X = f(X) is a continuously differen-
tiable vector field on an open set containing a closed bounded subset R of the plane, where
R doesn’t contain any fixed points, and 3 a trajectory C', which is confined in R, (means
starts in R and stays in R for all future time). Then either C'is a closed orbit, or it spirals
toward a closed orbit as t — oo. However, R contains a closed orbit.

NOTE:

It is one of the very important result in non-linear dynamics, because it ruled the behaviour
of irregular nature in two-dimensional systems. Applying the above theorem is not easy
generally. The main problem is How can we be sure that a confined trajectory C exists
in R. The standard trick is to construct a trapping region R. That is, a closed connected
set such that the vector field points inward everywhere on the boundary of R. Then all
trajectories in R are confined. If 3 no fixed points, then the theorem ensures that R
contains a closed orbit.
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The idea of nullclines

Draw vectors at every point (zg,yo) along the direction of f(zg,y0)i + g(xo,y0)j where
= f(z,y), ¥y = g(x,y) is a dynamical system. The z- nullcline is a set of points in the
phase plane with £ = 0. This can be found out by solving f(x,y) = 0. Similarly the y-

nullcline can be found out by solving g(x,y) = 0. For example, consider the system

T = —x—|—ay—i—x2y
g = b—ay—a%y, wherea,b>0

The nullclines are given by £ =9y =0

is the z- nullclines and y = is the y - nullclines. These nullclines

vy= a+ 2 a+ 2
can be sketched as below:

(ii)

x>0
y<0

. . x<0 .
y>0 (y=0) (x=0)

b
©0.2)
y—null clines(y =0)
/

Y-axis

x—null clines
/ (x=0) —T

X-axis

Note that direction of flow will be vertical on £ = 0 and horizontal on y = 0. The direction
can be determined by the signs of & and . If z is sufficiently large the 2% will dominate
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on & and y and hence & = z?y and = —2’y

d T
Hence, & _ — = —1 along trajectories.
r Y

Now, 24+y = b—z<0 ifb<z= z—(—9)<0
forb<axr= —y>a forb<xand

Hence —y > & for, x>band —y<z forz<b

d d {
Hence 9o E>—1 forx<band—y:£<—1 forx > b
dx Y de gy

Y-axis

(0,b/a)

e

0y b X-axis

d
Hence d_y is more negative than -1 and hence vectors are more steeper than the line
x

b d
from (b, —> with slope d—y = —1. This implies that the vector fields point inward on the
a x

diagonal line. Thus the region become a trapping region. Even now we cannot conclude
that there exist a closed orbit, since there exist a fixed point inside the region. If it is a
repeller, we can conclude that 3 a closed orbit by considering a punctured origin. The
repeller drives all neighbouring trajectories into the region. Now we have to prove that
the fixed point is a repeller. The fixed points are given by

—z4ay+2?y=0 and b—ay—2*y=0 = b—z=0 = ax=0>

—b4ay+bly = 0

y:

Now
1422y a+a2?
J p—

—2zy  —(a+2?)

- . 2

-1+ e a+b

2b*

=7 _ b2
a+ b? (a+5)




b
RESULT: Let ( “ J ) be a matrix, its eigenvalues are given by
c

Thatis (A—a)(A—d)—bc = 0 or XN —(a+dA+ad—bc=0
a+d=++/(a+d)?—4(ad — be)

A= 2
B a—i—di\/(a—l—d)z—él(ad—bc)
2 4
_ Trace " \/TT’CLC€2 — 4 Determinant
2 4
T 2 —4A
= 37 4

A has +ve real root if Trace > 0 and -ve real root if Trace < 0
— Unstable (Trace > 0) and Stable (Trace < 0) provided that Determinant > 0.

Hence for the above matrix,
2

Trace, 7 = —l+ﬁ—(a—i—b)2
 —a—b*+20* — (a+b)?
B a+ b?
B —a —b% +20* — a® — 2ab® — b*
B a+ b2
—bt 4+ 2ab? -2 +a®+a
= and
a+ b2
Determinant, A = — <—1 + 2—b2> (a+b%) + (a+b%)
’ a+ b2 a+ b2
= (a+b) -2 +2° =a+b*>>0
—b* +2ab> -2 +a’+a < Stable
Hence, 7 = PR = 0 Centre
> Unstable
> Stable

— b2 —1P+a’+a = 0 Centre
< Unstable

Now, b*+2ab?> —b>+a’>+a = Oor
PP+ 2a—1p+a®>+a = 0 (wherep=1>?)
1—2a++/(2a —1)2 — 4(a2 + a)

1
= 5 (1-2a+V1-28a)
1
B = 5 (1= 20+ V1-80)
4 _ 2 2
Hence, r — b+ (2a—1)b° + (a+a”)

a + b2
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Hence the fixed point is unstable for 7 > 0, and stable for 7 < 0. The dividing line
7 = 0 occurs when

b2:%(1—2aj:\/1—8a)

This defines a curve in (a,b) space, as shown in Figure.

T>0 T<0

b stable

limit cycle

stable
fixed point

(0,0) a
The parameters on the origin corresponding to 7 > 0 guaranteed the existence of a
closed orbit and 7 < 0 guaranteed non-existence of a closed orbit, since stable fixed points

exist in the region, where 7 < 0.

Kk 3k ok ok ok sk oskok 3k sk ok ok ok sk sk oksk
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Abstract : In this talk, I will discuss some important properties of conditional
expectation and will explain how it occurs as mean square estimate.

Conditional Distribution

Let X and Y be two continuous random variables with joint probability density function
(pdf) f. Then the conditional distribution function (df) of X, given Y = y is defined as
lim P{X <z|ly—e<Y <y+e€} and is denoted by F(z|y).

e—0t
Define the conditional density function of X, given Y = y, denoted by f(z]y) as a
x
non-negative function satisfying F'(z|y) = / f(zly) dt for all z € R.

—00
At every point (x,y) where f is continuous and the marginal pdf fy(y) > 0 and is

continuous, we have

 P{X <z Ye@y—ey+te}
F = 1
(zly) ot P{Y € (y—¢,y+e€}

y+e
/ flu,v) dv du
y—

y+6

fr(v) d

Yy—e€

5—)04r

Dividing the numerator and the denominator by 2¢ and passing to the limit as e — 0T,

we have
fu,y) .
Flaly) = / fluy) o
A s )
It follows that there exists a conditional pdf of X, given Y = y, that is expressed by
flz,y)
fxly) = » Jy(y) >0
(=lv) fy(y) )
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Conditional expectation

If i is a Borel-measurable function and X and Y are continuous random variables, then
the conditional expectation of h(X), given Y, written as E(h(X)/y) is defined by

bl = | T h@) flaly) de i fr(y) >0

—00

From this definition it is clear that E(h(X)/y) assumes different values for different values
of y.

Hence, E(h(X)|Y) itself is a random variable. The following result shows that the
average value of this random variable is not different from the average value that h(X)

assuies.

Result

Proof

E(E(WX)/Y)) =

Hence the result.

Note 1:

For a given x, E(Y|z) is the center of gravity of the masses in the vertical strip (z, x +dx).
The locus of these points, as x varies from —oo to 0o, is the function

via) = [ "y fyle) dy = E(Y o),

—0o0

known as the regression line.
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X X+ dx

&
\\6\
()
Z7
x

Note 2:

In general, ¥(z) = E(Y|z) is not a straight line however, if the random variables X and
o

Y are jointly normal, then ¢ (z) = uy + T—Y(x — px), a straight line.
oX

Note that if X and Y are jointly normal with zero mean, then
-1 x? 2r xy n y?
2(1 —r?) ag( ox oy O’%
1
5 €XP 2 2 2
2noxoyV1—r 207 (1 —1?) 20%

2
royx
1 ox )
= CXp 557 (1 — 12
oy+/2m(1 —r?) oy (1—1?)

Then, it can be shown that

1

x, = exp
f(@,y) 2noxoyvV1 —r?

so that f(ylz) =

B(Y/2) = py +7 oy (“’”;)fx)

The L” - spaces

If X :Q — R”is a random variable and p € [1,00) is a constant, we define the L? - norm
of X, denoted by ||X||, by

Xl

1/p
[/ | X (w)|P dP(w)] or simply we write
Q

([isr)"

The corresponding L? - spaces are defined by

Xl

LP(P)=LP(Q) ={X : Q= R"; || X]|, < oo}.
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LP - spaces are Banach spaces, ie, complete normed linear spaces. In particular, L?(p)
is even a Hilbert space, ie, a complete inner product space with inner product (X,Y) =
E(XY), X,Y € L%*(p) so that || X||3 = E(X?). Now, let us assume that we want to
estimate the random variable Y by means of the information we have with the random
variable X. In particular, suppose that the linear function a X is used to estimate Y. We

choose the constant a in such a way that the mean square error estimate is minimum. ie,
e=|Y —aX|3=FE ((Y —aX)?) is minimum.
The necessary condition for which is

Oe

5, =0 = E(Y -aX)X)=0

which means that Y — a X is orthogonal to X.
Conversely, assume that Y — aX is orthogonal to X.
Then,

E((Y—aX)?) = E((Y —aX)+(a
= E((Y —aX)?) + (a—a)® E(X?)

Therefore, E ((Y — aX)?) > E ((Y — aX)?) for any a.

This shows that E ((Y — aX)?) is minimum if and only if ¥ — aX is orthogonal to X.

E(XY
ie, if and only if a = ﬁ
Non-linear mean square estimation

Suppose we wish to estimate Y not by a linear function but by a non-linear function g(X)
of the random variable X. Our problem now is to find the function g(X) such that the
mean square error

e = [Y—g(X )H2_E((Y_9(X))2)

Z//y 9())” f(z,y) dz dy
ow, = [ sxta) / (1= 9@ Sl dy ) do

Since the integrands are positive, e is minimum if the inner integral is minimum for every

1S minimum.

x. But, as per our previous discussion, the inner integral is minimum if and only if
9(X) = E(Y/X). Thus the optimum ¢(X) is the regression line ¥(X) = E(Y/X).
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Abstract : The study of the behaviour of Brownian motion around a point was
initiated by Paul Levy, who introduced the notion of the ‘local time’ at a point.
Building on Levy’s work, Ito’s excursion theory lays out the tools for calculating
probabilities related to the excursions of Brownian motion above and below a point.
In this talk, we look at the case of Brownian excursions into an interval, from the
boundary.

1 Preliminaries

We have a probability space (£2, F, P). A random variable is a function

T :=[0,00) is the time parameter set.

A collection of random variables {X; : ¢t € T'} is called a stochastic process.
Notation: {X € A} := {w: X(w) € A}.

A statement S holds almost surely (a.s.), if

P {w: S is true for w} = 1.

2 Two points of view

For each w € Q the collection of real numbers (X;(w)) can be viewed as a function from
T — R called a (random) trajectory of the process (X;) corresponding to w €
Thus, a stochastic process is both a collection of random variables (X; : t € T') as well as
a collection of random functions on 7' viz. the trajectories {t - X;(w) : w € Q}.
We will consider only the case when all the trajectories are realised as continuous functions
on 7. i.e. we are dealing with a collection of random continuous functions on 7' = [0, 00).

3 Functionals associated with a continuous function
Let h: T — R be a fixed continuous function, h(0) = 0. Let Z(h) := {t : h(t) = 0}. This
is a closed set . Its complement Z(h)€ is a union of open intervals.
Z(h)* = Ui(i, Bi)
Example 3.1. (a) h(t) := sin(t)

(b) h(t) := t.sin(})
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Let a < b be two real numbers and (a,b) the corresponding open interval in the real
line. Let h(.) be a continuous function on 7" as above. For each ¢t > 0, we define
Cy := Cy(h, (a,b)) := number of crossings of (a,b) by h(.) during [0, ¢]. Note that as ba, Cy
and that in any finite time interval a continuous function can have only a finite number of
crossings. When we replace h(.) by the (random) trajectory of a stochastic process (X;)
viz. we take h(.) = X.(w) we get random functionals of the trajectories viz.

Ci(w) == C(X.(w), (a,b))

Similarly

and

4 Excursions into an interval
Let a < b.W : [0,00) — R, continuous. Let

Zap = {t : Wy < aorW; > b}
Zap =1t : W € (a,b)}

= U(%‘,&‘)-

Definition 4.1. A stochastic process (W;);>0 is a 1-dimensional standard Brownian mo-

tion iff

(a) Wy =Wy~ N(0,t —s),0<s<t

(b) It has independent increments ie. for 0 < t; < to < -+ < t,. Wy, W —
Wa, -+ Wy, — W1 are independent random variables.
(c) Wo=0.

(d) t — Wi(w) is continuous for every w € €.

5 The Zeroes of Brownian motion

Basic result : almost surely, Z = {t : W; = 0} is an uncountable, closed, perfect set of

zero Lebesgue measure.

Z° = U(az’,ﬁi)

(2

Note that during an excursion interval,(ay, 5;), Wy # 0. Hence either W; > 0 for every
t € (04, 5;) or Wy <0 for every t € (o, f;). For W, = Wp, = 0.
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6 Problem

Note that for two excursion intervals (o, 3;) we cannot say a; < o and f3; < f; if i < j.

Equivalently, the problem is to obtain a good description of the excursions of the Brownian
path s — W during the time [0, ]?

Itos solution: We can do this in the interval [0, 7] for certain random times - called

stopping times - 7 .

7 Stopping times

A random time is a map o : Q — [0,00). A stopping time o with respect to (W;) is a
random time with the property that (o <t¢) C Q is determined by {W,, : u < t}.

Example 7.1.
o=inf{u: W, >1}
T = sup{u: W, > 1}

Note that Wy (w) := Wy (w) = Wi(w) where t = o(w) is a random variable.

8 Adapted Functionals

A functional T}(.),t > 0 defined on continuous functions is said to be adapted to the process
(Xy) if the value of the functional T3(X.(w)) on the random trajectory s — Xs(w),s > 0
depends only on the part of the trajectory during [0,¢] viz. X (w),0 < s <t.

Example 8.1. T;(h) := sup h(s) is not an adapted functional. t —1 A0 < s < ¢+ 1 Note
that the number of crossings C; defined earlier is an adapted functional.

Theorem 8.1. (K.B.Athreya and B.Rajeev, 2013, Sankhya) Let {C},t > 0} be the number
of crossings of (a,b) by the Brownian motion (W;) during [0, ¢], and X have the standard

normal distribution. Then as ¢t — oo we have
C o 1XI
Vi 2(b—a)

Definition 8.1. A continuous adapted process (L;); > 0 is called a local time for (W;) at
the point zero iff

(a) Yw € Q,t — Ly(w) is non decreasing.

(b) It increases only on Z i.e.

t
/ I7(s)dL, = Ly
0
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almost surely or equivalently

t
/ Ize(s)dLs =0
0

almost surely.

9 Levys construction of local time

Let € > 0 and define C*(t) := Number of crossings of (0,¢) by the path s — Wy during
the time interval [0,t]. Note that , in earlier notation C(t) = C¢x(W., (0, ¢)).
Theorem 9.1. almost surely, the following hold for each ¢ > 0 :

lim C¢(t) = o0

e—0

and
lim GCe(t) = Lt

e—0

10 Tracking Excursions through Local time

Recall Z¢ = |J; (o, B;). Note that Lg, — Lo, =0, a.s. Let
Ti=1inf{s>0:Ls >t}
Facts

(a) Almost surely, ¢ — 7 is a non-decreasing right continuous function.
(b) L, =t.
(¢) When A7y # 0, (11—, 7¢) = (o, ;) for some 1.

(d) For each ¢t > 0,7; (and consequently 7,—) are stopping times with respect to (W;).

11 Excursions of (1))

Let ¢t > 0. Suppose Aryneq0. Then the excursion of (W;) in the interval (7,—,7;) is given

by the function
er(s) =Wr_ys,0<s <1 — 14—

. Let
U:={w:[0,00) > R,w(0) =0,w(R) =0,w(t) # 0,0 <t < R,w(-)continuous}
= UTuUU"
Ut i={weU:w(t) >0}
Note that if A1 # 0,e; € U. Let "C U be a subset of excursions. We define random

variable.
N, =t{s<t:A, #0,es(-) €}

= number of excursions during [0, t] that lie in the set".

-
For many sets ", N, = oo.
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Example 11.1. if " := {w € U : sup|w(s)| < 1} then N, = oo because there are infinitely
many points s € [0,t] with A7y = 0, and supy|es(u)| = supy|Wr, 44| < 1. On the other
hand N, < oo almost surely. Note that the number of events N, during [0,¢] as defined
above actually correspond to the number of excursions of (Ws) during [0, 7¢].

12 K.Itos description of Brownian excursions

Theorem 12.1. (a) there exist , "€ U,n > 1 such that U = ,|J, >, n and N, < oo
for all t > 0, almost surely for each n > 1.

(b) Suppose N, < oo almost surely, for all ¢ > 0. Then (N, );>0 is a Poisson process

with parameter n(™) := %ENtr . In particular, for 0 < t; <ty <+ <y, Ny, N;, —
Nijye- — N, are independent Poisson random variables.

r r

N,

13 Markov Property
The Brownian motion (W) is a Markov process: if 0 < s <t +s
P(Wits € AWy, u < s) = P(Wyys € A|Ws).
It is a strong Markov process: if o is a finite random (stopping) time and ¢ > 0

P(Wt+o— S A[Wu,u < O') = P(Wt+o— S A’WO—)

14 Independent Increments and Markov Property

It is known that the property of Independent Increments implies the (ordinary) Markov
property.

If in addition, the paths are continuous, as in Brownian motion, then we can show for
a finite stopping time o

(Wite — We)i>0 is independent of {Wy :t < o}

In particular (WW;) is a strong Markov process.

15 Sketch of Proof:

The events Ntrn — N, are determined by the Brownian motion (W;) during (7,7, ].
The independence of increments of (N, ) follows from the independence of the incre-

ments of Brownian motion (W;) during the intervals (0,7, ], (¢, o] -+ 5 (Te,15 T8, - Also

we note that a counting process with independent increments has to be a Poisson process.
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Consider the n-dimensional control system described by the vector differential equation
#(t) = A(D(t) + Be)u(t), ¢ € (to,0) 1)

z(to) = 7o

where, A(t) = (aij(t))nxn is an n x n matrix with entries are continuous functions of ¢
defined on I = [tg,t1], B(t) = (bij(t))nxm is an n X m matrix with entries are continuous
function of ¢t on I. The state x(t) is an n-vector, control u(t) is an m-vector. We first
deal with controllability of one dimensional system which described by a scalar differential
equation.

What is a control system ?

Consider a 1-dimensional system

d
d—f =2z, xz(0)=3
The solution of the system is () = 3e~2! and its graph is shown in the following figure

3

-2t

If we add a nonhomogeneous term sin(t) called the forcing term or control term to it then

the system is given by
dx

i —2x + sin(t)

z(0)=3
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Observe that the solution or the trajectory of the system is changed. That is, the evolution
of the system is changed by adding the new forcing term to the system. Thus the system
with a forcing term is called a control system.

Controllability Problem

The controllability problem is to check the existence of a forcing term or control function
u(t) such that the corresponding solution of the system will pass through a desired point
x(t1) =1 .

We now show that the scalar control system

T = ax + bu

z(to) = o

is controllable. We produce a control function u(t) such that the corresponding solution

starting with x(t9) = z¢ also satisfies x(t1) = z1. Choose a differentiable function z(t)

satisfying z(t9) = z¢p and z(t1) = x1. For example, by the method of linear interpolation,
T1—T0

z —x0 = F=2(t — to). Thus the function

satisfies

A Steering Control using z(t): The form of the control system

T =ax+ bu
motivates a control of the form

u:g[ﬁv—ax]

Thus we define a control using the funtion z by

T =ax+ b[%[é —az]

Tt —Z2=alx—2)

o8



i(m—z) =a(x — 2)

dt
.%'(to) — Z(to) =0

Let y=2—2
dy
bt Y
at ~ Y
y(to):O.

The unique solution of the system is y(t) = x(t) — z(t) = 0. That is, x(t) = z(¢) is the
solution of the controlled system satisfying the required end condition x(t9) = z¢ and
x(t1) = x1. Thus the control function

u(t) = —[2(t) — az(t)] is a steering control.

S| =

Remark : Here we have not only controllability but the control steers the system along
the given trajectory z. This is a strong notion of controllability known as trajectory
controllability. Trajectory controllability is possible for a time-dependent scalar system
t=a(t)r+bt)u : b(t) A0 VY tE [ty,t1] In this case the steering control is

u=——[2—a(t)z]

1
b(t)

n-dimensional system with m =n

Consider an n-dimensional system x = Ax + Bu, where Aand Bare n X n matrices and B
is invertible matrix. Now consider a control function as in the case of scalar systen, given
by

u= Bz — Az

where, z(t) is a n-vector valued and differentiable function satisfying z(ty) = x9 and
z(t1) = x1. Using this control we have

i = Az + BBz — Az]
T—2=Ax—2)
i’(to) — Z(to) =0

= x(t) = 2(t)

Remark: If BB~! = I, that is, if B has right inverse then also the system is trajectory
controllable. When m < n:
When m < n we consider the system

i = A(t)z+ B(t)u (1)
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.%'(to) = X
Alt) = (aii(t))nxn.
B(t) = (bii(t))nxm

Definition(Controllability) : The system (2) is controllable on an interval [to,#1] if
VY xg,21 € R", 3 controllable function u € L?([to,t1] : R™) such that the corresponding
solution of (2) satisfying x(tg) = xo also satisfies x(t1) = x1: Since xg and z; are arbitrary
this notion is also known as exact controllability or complete controllability.

Subspace Controllability : Let D C R™ be a subspace of R" and if the system is
controllable for all zg,z1 € D then we say that the system is controllable to the subspace
D.

Approximate Controllability: If D is dense in state space then the system is approxi-
mately controllable. But in R™, R" is the only dense subspace of R™. Thus approximate
controllability is equivalent to complete controllability in R™. For the subspace D we have

DCR"and D=R" implies D =R"

Null Controllability : If every non - zero state zo € R™ can be steered to the null state

0 € R™ by a steering control then the system is said to be null controllable.
We now see examples of controllable and uncontrollable systems.
Example: Tank Problem :

g | oI

Let 21 (t) be the water level in Tank 1 and x2(t) be the water level in Tank 2. Let a be the
rate of outflow from Tank 1 and S be rate of outflow from Tank 2. Let u be the supply of
water to the system. The system can be modelled into the following differential equations:

d.%'l 4
— = —ax] +u
dt !

d

& = o= B

Model - 1:



Model - 2:

d.%'l

— = —az

dt !

d

% = ax1—PBrotu

s(2) - (7))

Obviously the second tank model is not controllable because supply can not change the
water level in Tank 1. We will see later that the Model 1 is controllable whereas the model
2 is not controllable.

Controllability analysis can be made in many real life problems like :
(i) Rocket launching Problem, Satellite control and control of aircraft
(ii) Biological System : Sugar Level in blood
(iii) Defence: Missiles & Anti-missiles problems.
(iv) Economy- regulating inflation rate
(v) Eology: Predator - Prey system

Solution of the Controlled System using Transition Matrix :

Consider the n-dimensional linear control system:
= A(t)x + B(t)u, z(tg) =xo

Let ®(t tp) be the transition matrix of the homogeneous system & = A(t)xz. The solution
of the control system is given by ( using variation of parameter method)

x(t) = ®(t,to)xo —i—/ O(t 7)B(T)u(r)dr

to

The system is controllable iff for arbitrary initial and final states xg, ;1 there exists a
control function u such that

1 = B(ty, to)z0 + / " Bty ) B(r)u(r)dr

to
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We first show that for linear systems complete controllability and null-controllability are
equivalent.

Theorem :The linear system (1) is completely controllable iff it null-controllable.
Proof : It is obvious that complete controllability implies null-controllability.We now
show that null-controllability implies complete controllability. Suppose that zg is to be
steered to x7.

Suppose that the system is null-controllable and let wy = z¢g — ®(tg,t1)x1. Thus there
exists a control u such that

0 = (tr, to)wo + /tl B(tr, ) B(r)u(r)dr

to

= @(tl,to)[xo — ‘P(to,tl)xl] + /t1 CI)(tl,T)B(T)u(T)dT

to

= O(ty,t0)z0 — 21 + /tl O(ty,7)B(T)u(r)dr

to
t1
x1 = D(t1,t0)zo —|—/ O(ty,7)B(T)u(r)dr
to
= a(t1)
= u steers o to x1 during [to, t1]

Conditions for Controllability :
The system (1) is controllable iff 3w € L?(I,R™) such that

21 = Dt 11)70 + / " B(tr, 1) B(r)u(r)dr

to

.21 — D(to, 11 )30 = / " Bty 1) B(r)u(r)dr

to

Define an operator C : L?(I,R™) — R" by

Cu = / "Bty 7)B(r)ulr)dr

to

Obviously, C' is a bounded linear operator and Range of C' is a subspace of R™. Since
xg,x1 are arbitrary, the system is controllable iff C' is onto.

Range(C) is called the Reachabie set of the system.

Theorem : The following statements are equivalent:

(a) The linear system (1) is completely controllable.
(b) C is onto

(c) C*is 1-1

(d) CC*is 1-1

In the above result, the operator C* is the adjoint of the operator C. We now obtain the
explicit form of C*.
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Adjoint Operator :The operator C' : L*(I,R™) — R" defines its adjoint C* : R" —
L2(I,R™) in the following way:

t1
< Cu,v >pn = </ O(ty,7)B(T)u(r)dr,v >pn dT
to

t1
= / < O(ty,7)B(T)u(r)dT,v >Rn dT

to
t1
= / < u(r), B*(1)®* (t1, 7)v >rn dT
to
= < U,B*()Q*(tl,T)’U >L2(I,Rm)
= <u, C*v >L2(I,]Rm)
(C*)(t) = B*(t)®*(t1,t)v
t1
Using C* we get CC* in the form CC* = / O(t1,7)B(T)B*(1)p" (t1, T)dT
to
Observe that CC* :  R"™ — R™ is a bounded linear operator. Thus, CC* is an n by n
matrix.
Thus we have from the previous theorem that the system (1) is controllable <—= C'is
onto <— CC*"is 1-1
<= (C(C" is an invertible matrix.
The matrix CC* is known as the Controllability Grammian for the linear system and is
given by
Controllability Grammian

W(to, 1) = / " By, 7)B(r) B (1) (11, 7)dr

to
By using inverse of the controllability Grammian we now define a steering control as given
in the following theorem.
Theorem :The linear control system is controllable iff W (to,¢;) is invertible and the
steering control that move x( to x; is given by
u(t) = B*(t)®*(t1, )W L(to, t1)[x1 — ®(to, t1)70]
Proof : Controllability part is already proved earlier. We now show that the steering

control defined above actually does the tranfer of states. The controlled state is given by

2(t) = Bt to)wo + / " B(tr. 1) B(r)u(r)dr

to

x(t) = ®(t,to)xo + /tt<I>(t,T)B(T)B*(T)q)*(tl,T)W_l(to,tl)[xl — ®(tg, t1)xoldr
x(tl) = (I)(tl,t())ﬁﬂ(] + W(to,tl)Wil(to,tl)[Cﬂl — (I)(to,tl)xo]

m(tl) = I
Remark :Among all controls steering xg to x1, the control defined above is having mini-
mum L2- norm (energy). We will prove this fact later.

Define a matrix @) given by
Q = [B|AB|... A" ' B]
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It can be shown that Range of W (o, t1) = Range of Q

Controllability of the linear system and the rank of ) are related by the following
Kalman’s Rank Test.
Theorem ( Kalman’s Rank Condition) : If the matrices A and B are time - inde-

pendent then linear system (1) is controllable iff
Rank(B|AB|...|A"'B) =n
Proof : Suppose that the system is controllable.

Thus the operator C': L?(I,R™) — R"™ defined by

t1
Cu = / (11, 7)B(r)u(r)dr
to
is onto.We now prove that
R"™ = Range(C) C Range(Q).

Let x € R" then Ju € L?*(I,R") such that
t1
/ A=) Bu(r)dr = x
to

Expand e4(*1~7) by Cayley - Hamilton’s Theorem.
t1
/ [Py(0) + PLA + PyA? + ... 4+ P, 1 A" Y Bu(r)dr] = z
to

—> x € Range[B|AB|A®B].......... |A"1B]

Conversely, Suppose that condition holds but system is not controllable. ie,Rank of

W(t07 tO) 7é n
— Jv # 0 € R"such thatW (tp,t1)v =0

- UTW(t07t1)U =0

t1
/ oI ®(ty, 7)BB*®*(t1, T)vdr = 0
to

t1
= ||B*<I>*(t1,7')v||2d7' =0
to

= B*®*(t1,t)v =0 tE€ [to, 11
= " ®(t1,t)B=0 1€ [to,t]
A= =0t € [t 1]

Lett=1t;, vIB=0

A(

Differentiating v7eA(1=t) B = 0 with respect to ¢t and putting t = ¢,



— (v L Range[B|AB]....|A" ' B))

Hence Rank of QQ # n

Rank condition is violated and thus we get a contradiction and thus the system is control-
lable.

Examples : Tank Problem: Model I.

() () ()6

Q:[B:AB|=

Rank ) =2 = System is controllable.
Model - 2 :
d z1 \ [ —a 0 T 0
dt xo | a —pf T9 * 1 o

rank(Q) =1 £ 2
= System is not controllable.
Computation of Steering Control :

Cu = w
CC*v = w

where © = C*v. The system is controllable iff

C is onto.

<~ C%isl — 1.

— CC"isl — 1.

<= (C'C™is invertible.

If CC* is invertible then
v = (CC*)lw
u = C*CCH) tw

is the steering control.
Controllability Example :

Spring Mass System : Consider a spring mass system having unit mass and with spring

constant 1. By Newton’s law of motion we have the following differential equation.
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k=1

(% 0)

Transition Matrix by Laplace Transform Method :
We know that et = L™1{(sI — A)~'}

(sI—A):<i _31>

1 s —1 g s L
(s —A) ' = — = & P
s+ 1 1 s e i)

s _1 .
L Ysr—Ay =171 [ 32?51 s241 ] _ ( cost sint )

—sint sint

Another Way - Matrix Expansion:

A? A3
At _ A 9 A3
e —[+At+2!t+3!t+ ..........
A2 0 1 0 1 _ g
-1 0 -1 0
A=A
At =
A=A
(1 0]fo ¢ = 0o = =+
At _ 2! 3! 4!
€ = + 42 + _43 +
_0 1 t 0 0 2—t, 3t! 0 0
r 2 4 3 5
_ —%t%+m —%+%—
—t+L - 1-L4h—
_ | cost sint
N —sint cost
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0 0
Let the initial state and the desired final states be given by < z1(0) ) = ( )

(

CCl(T) _
CCQ(T)

1‘2(0)

N[N0

> Transition Matrix is given by,

—sin(T —t) cos(T —t)

()

O(T, 1) = < cos(T'—t) sin(T —t) )

Controllability Grammian is given by,

W) — /OT < sin(T:?) ) ( sin(T'—t) cos(T —t) >d7§

w0, T) = <

cos(T

B (T —sin2T)  1(1 — cos2T)
(1 —cos2T (T + 4sin2T)

4

T+ 3sin2T  X(cos2T —1)
(

2 — 2(1 —cos2T) \ *(cos2T —1) (T —%sin27)

The steering control is

B 4 cos(T —t) —sin(T —t) _
u(t) = T2 —1/2(1 — cos 27) (0.1) ( sin(T — t) cos(T — t) ) wO.T) (

1

N[ N[ =
\/

(T = 2y cos(T — 1) + sin(T — )] + %[COS(T + 1) —sin(T + )]}

C T2 - 11— cos2T) 2

Minimum norm control :We now prove that the steering control defined in the above

discussion is actually an optimal control.
Theorem: The control function defined by ug = B*(t)®*(t1,t)W ~(to, t1)z1 is a minimum
norm control among all other controls steering the system from state x( to state xy.

That is, ||ug|| < ||u|| for all other steering controllers u in L?(I,R)

Proof:

Let u = ug + u — up and hence we have

lul > =

[luo + (u — uo)||?

< up + (u—uo),uo + (u—up) >
< Uug,ug >+ < uUg,u —ug >+ <u—ug,uy >+ <uU-—ug,U — uy >

lluol* + [Ju — uo||* + 2Re < ug, u—ug >p2
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Now,

t1
<ugu—uo > = / < wo(t), ult) — uol(t) >pe dt

to

— /t1 < B*(t)®* (t1, )W Y(tg, t1) 1, u(t) — ug(t) > dt

to

Wt ), /tl B(t, ) B)[ut) — uo(t)]dt >

to
= < Wﬁl(to,tl)xl, xr1 — T >
=0

Since both u and ug are steering controllers.

Thus
ul? = [Juoll® + v — uol |

or - [[ull* — [uoll* = [Ju — uo||* > 0
[lul[* > fJuol[?

for all steering controllers wu.
Adjoint Equation : An equation having solution x in some inner product space is said to

be adjoint of an equation with solution p in the same inner product space if < z(t), p(t) >
= constant.

Theorem : The adjoint equation associated with & = A(t)z is p(t) = —A*(t)p

Proof :

o < e.p(t) > = <a(t),p(t) >+ <x(t).,p(t) >
= <Az, p(t) > + < z(t), —A*(t)p(t) >
= <uz(t), A"(t)p(t) > + < z(t), A" (O)p(t) >
= <z(t),0>=0

< z(t),p(t) > = constant.
Theorem : If ®(¢,1() is the transition matrix of ©(t) = A(t)x then ®*(¢o,t) is the transi-
tion matrix of its adjoint system p = —A*(¢)p.
Proof :

I = & Yt to)®(t to)

=41 = L@ 11000 1)
_ %[(I)‘l(t,to)]q)(t,to)+<I>_1(75,t0)‘i)(75,t0)

= D(to,t)P(t, to) + D(to, t) A(t)D(, to)
0 = [®(tg,t) + P(to, t)A(t)] (¢, to)

— D(to,t) = —D(to,t)A(t)
O*(to, t) = —A*(t)D*(to,t)
= O*(to,t) is the transition matrix of the adjoint system.
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Remark : The system is self adjoint if A(t) = —A*(¢) and in this case

D(t,tg) = ®*(to,t)
= @ !(t, o)
B(t,t0)D*(t,tg) = I

Observability
Problem of finding the state vector knowing only the output y over some interval of

time [to, tl] .
Consider the input free system

with the observation equation

where C(t) = (¢ij(t))mxn matrix having entries as continuous functions of ¢.
Let ®(t,tg) be the transition matrix. The solution is z(t) = ®(¢,tg)xo
Thus

y(t) = C(O)(t to)wo o <t <t

Definition : System (3) is said to be observable over a time period [tg, ¢;] if it is possible
to determine uniquely the initial state z(¢y) = 2o from the knowledge of the output y(t)
over [tg,t1].

The complete state of the system is known if initial state x( is known.

Define a linear operator
L:R" = L*([to, t1]; R™)by

(L.%'o)(t) = C(t)@(t, to).%'o

Thus,
y(t) = (Lxo)(t) t € [to, 1]

The system is observable iff L is invertible.
Theorem :The following statements are equivalent.

(a) The linear system @(t) = A(t)z(t), y(t) = C(t)x(t) is observable.
(b) The operator L is 1-1.

(¢) The adjoint operator L* is onto.

(d) The operator L*L is onto.

Remark : L*L : R” — R" is an n X n matrix called Observability Grammian.
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Finding L*: L? — R™

t1
< (Lao) () w() >pegm = / < CO)D(t, to) o, w(t) > dt
to
t1
_ / < 20, 8" (1, 1) C* (D) (t) >an dt
to
t1
— < / B (£, £0)C™ (E)w(t)dt >gn
to
= <z, L'w(.) >rn

Thus,
t1
L*w:/ D" (t,t0)C* (t)w(t)dt
to

Observability Grammian The observability Grammian is given by

M(to,t1) = L*L = / ! B (t, 1) C* (1) C (£)D(t, to)dt

The linear system is observable if and only if the observability Grammian is invertible.
Kalman’s Rank Condition for Time Invariant System

If A and C are time-independent matrices,then we have the following Rank Condition
for Observability.
Theorem : The linear system @(t) = Ax(t), y(t) = Cx(t) is observable iff the rank of the
following Observability matrix O

C
CA
0= CA?
i
is n.
Proof : The observation y(t) and its time derivatives are given by,

yt) = Ceg(0)
ylt) = CAez(0)
y2(t) = CA%eMz(0)
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The initial condition (0) can be obtained from the equation.

C y°(0)
CA y'(0)
C A2 z(0) = y%(0)

O An-1 J1(0)

The initial state x(0) can be determined if the observability matrix on the left hand side
has full rank n.

Hence the system is observable if the Kalman’s Rank Condition holds true. Converse can
be proved easily(exercise).

Reconstruction of initial state xy : We have

y = Lxg
L'y = L*Lxg
xg = (L*L)"'L*y

o= Mot | " 0 () O Py () dr

Duality Theorem :

The linear system
z = A(t)+ B(t)u (3)

is controllable iff the adjoint system

T =—A"(t)
y = B*(t)z } )

is observable.

Proof': If (¢, tp) is the transition matrix generated by A(t) then ®*(t¢, t) is the transition
matrix generated by —A*(t).

The system (5) is observable iff the observability Grammian

M(to,t1) = /tl [®*(to,t)]" (B*)(t)*B*(t)®* (to,t)dt is non-singular

O (tg,t)B(t)B*(t)®*(tg,t)dt is non-singular

D(ty,t) B*(t)®*(t1,t)dt is non-singular

/ (t1,t0)®(tg, t)B(t)B*(t)®* (t1,t0)®" (tg,t)dt is non-singular

to, t1) is non-singular

Hﬂﬂﬂ

The system (4) is controllable.
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Example :

d I -2 =2 0 I
E T2 = 0 0 1 T2
T3 0 -3 —4 T3

T = Ax

y(t) =[1,0,1]z(t). That is, y = Cx

C 1 -2 4
O=| CA | =0 -5 16
CA? 1 —4 11
has rank 3.
— (A4, C) is observable.
Airplane Model(linear Model) :
¢
) @ horizontal

Let us define the following variables: ¢(t):pitch angle = body of the plane inclined to an
angle ¢ with the horizontal.

a(t):Flight Path Angle: The path of the flight is along a straight line and it is at an angle
«a with the horizontal.

h(t): Altitude of the plane at time t.

c: Plane flies at a constant non-zero ground speed c.

w: Natural Oscillation frequency of the pitch angle.

a,b: the constants.

u(t): The control input u is applied to the aircraft by the elevators at the tail of the flight.
a > 0 for ascending o < 0 for descending.

Now the mathematical model of the system for small ¢ and « is given by

a = a(p—a)
¢ = —w(¢p—oa—Dbu)
h = ca

Consider the variables:
Let 71 = a,wo = ¢, 13 = ¢, ;4 = @

T —a a 0 O T 0
Zo 0 0 10 To 0
T3 T w? —w? 00 T3 * w?b b
) c 0 00 Ty 0
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Show that the system is controllable.
Satellite Problem :

u2
ul
r
0
Earth \
T 0 1 0 0 T 00
d z | | 3w 0 0 2w 2 | 10 uy (t)
d| z | | o 0 0 1 z3 0 0 U
T4 0 —2w 0 T4 11
u1(t) - radial thrusters
u9 - tangential thrusters
1 0 0O
t) = t
y(t) [0 0 1 0]5'3()
Show that the system is observable.
Only radial distance measurements are available: :
1
0
yi(t) = 0 z(t) = Crz(t)
0
o 1 0 0
CiA | 0 1 0 0
ChA2 | | 3w 0 0 2w
C1 A3 0 —w? 0 0

has rank 3.
Thus the system is not observable only with radistance measurements.
Only measurements of angle are available :

y2 = [0,0,1,0]z(t)

= ng(t)

Ca
CrA
CyA?
CyA3

rank =4
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This implies that even with the measurement of angle alone the system is observable.
Electrical Circuit Example :

Consider the following circuit:

x1 X2

The state space representation is given by,

T\ _ Ig_é % L R_lc ul(t)
1:2 _Tl 0 X9 %

Observation equation is given by

yt)=| -1 0] <2>+u(t)

1 —2 1
RC W7 j ),
T RLC

Q=[BlAB) =

The system is uncontrollable if det = m — % =0iff R= \/g
Observation Matrix is
[ 1 0
| 2 -1
RC C

It has full rank implies the observability of the system.

C

O=1ca

Observability Example : Consider the spring mass system considered earlier.

Let the observability equation be given by

y(t) = [0, 1] [ . ]

)
C =10,1]

C

Obs bility Matrix O =
servability Matrix oA

[21]

Rank is 2 = System is observable.
Computation of initial state xg
Let [to, tl] = [—7‘1’, 0]

-1
<I>(t ) cost sint -1 0 —cost —sint
a_ﬂ- — . - .
—sint cost 0o -1 sint —cost




—cost —sint
Coft,—m) = [0’1][ sint —cost]

= [—cost — sint]

W(,r) = /O [_COSt][—cost —sint}dt

_x | —sint
B / 0 cos’t  sintcost dt
N _x | costsint sin® ¢

_ m( 10
210 1

Now using the reconstruction formula

(3)-
xo(—m)

—cost
. ><%cost %sint)dt
—sint

—cos?t —costsint
. 2 dt
—sintcost sin“t
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Abstract : This paper presents the findings on mathematics teachers’ pedagogi-
cal content knowledge (PCK) in statistics teaching. Six mathematics teachers were
initially selected for the study based on their school’s performance over two years in
the senior certificate examination in mathematics, and the four top scorers in the a
conceptual knowledge exercise (CKE) in statistics were finally selected for this study
. The study adopted a qualitative research method. The data on the teachers’ PCK
were collected through lesson observations, questionnaires, interviews, video record-
ings, teachers’ written reports, and document analyses. The results of the study show
that the teachers possess topic specific subject matter content knowledge and use of
procedural and conceptual knowledge to teach statistics in school mathematics. The
implications for mathematics education programmes are discussed.

1 Introduction

In an attempt to improve learners’ achievement in mathematics and sciences, several
researchers use the terms ‘subject matter knowledge’ and ‘subject matter content’ to de-
scribe the kind of knowledge that teachers need for teaching (Shulman, 1986; Ma, 1999;
Vistro-Yu, 2003; Jong, 2003; Jong, Van Driel and Verloop, 2005; Halim and Meerah,
2002; Rollnick, Bennett, Rhemtula, Dharsey and Ndlovu 2008). In terms of mathemat-
ics teaching, Plotz (2007) refers to subject matter content knowledge as ‘mathematical
content knowledge’. With regard to PCK development in statistics teaching, it is neces-
sary to define what each of the concepts means so that they can be used to define the
PCK constructs used in statistics teaching. Plotz (2007) argues that mathematical con-
tent knowledge is largely acquired by studying mathematics in school, and this may be
described as ‘in-school acquired knowledge’. Van Driel, Verloop and De Vos (1998), Jong
(2003), and Jong et al. (2005), describe subject matter knowledge as knowledge obtained
through formal training at universities and colleges which may be regarded as disciplinary
education. Subject matter knowledge, one can therefore conclude, is acquired through
formal training in a subject area.

Ball and Bass (2000 argue that the subject matter knowledge needed by teachers is
found not only in the topics of to be learned but also in the practice of teaching itself.
In other words, knowing the content of a subject is not enough to qualify a teacher to
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teach; what makes a teacher capable of teaching is how well he or she facilitates learning.
According to these authors, little is known about the way in which ‘knowing’ a specific
topic in a list of topics affects a teacher’s capabilities, and if one expects to identify the
subject matter content knowledge needed for teaching from the curriculum without fo-
cusing on practice as well, not much will be gained (Ball and Bass, 2000; Plotz, 2007).
Plotz’s (2007) study also reveals that mathematical content knowledge and pedagogical
knowledge are both required for effective teaching and can enhance development of PCK.
He further stress that teachers’ prior knowledge is also needed for effective content knowl-
edge transformation and understanding since prior knowledge aids teachers in the design
of problem solving activities during classroom practice.

Capraro, Capraro, Parker, Kulm and Raulerson (2005) researched the role of mathe-
matics content knowledge in developing pre-service teachers’ PCK using performance in
a previous mathematics course, a pre- and post-test assessment instrument, success in
the state-level teacher certification examination, and journals. Their study outlined the
connection between mathematics content knowledge and pedagogical knowledge in devel-
oping PCK. A total of 193 undergraduate students in integrated method block courses
were involved in the research project and the findings indicated that teachers’ previous
mathematical abilities are valuable predictors of students’ success in teacher certificate
examinations. In addition, mathematically competent pre-service teachers exhibited pro-
gressively more PCK since they had been exposed to mathematical pedagogy comprising
subject matter content and teaching practice during their mathematics method courses.
To be pedagogically effective in teaching a topic, it is necessary to have comprehensive
understanding of it.

However, the South African mathematics (Grades 10-12) teaching force is made up
mainly of practitioners who have three-year teaching diplomas obtained from the old (pre-
1994) colleges of education (Rollnick et al., 2008). According to these authors less than
40% of these teachers hold a junior degree on the subjects they teach and mathematics
content only measures up to that of first year at a university. In this study the key
question is, given that the teachers show competence or understanding of these concepts
in mathematics, irrespective of their training, how does this influence their teaching and
therefore their PCK for teaching statistics in school mathematics?

2 Conceptual framework

Research reports by Manouchehri (1976) indicated that subject matter content knowledge
consists of an explanatory framework and the rules of evidence within a discipline. Accord-
ing to Jong (2003), subject matter content knowledge of prospective mathematics teachers
is acquired primarily during disciplinary education (Jong, 2003). This knowledge consists
of substantive content knowledge and syntactic content knowledge (SnBarnes, 2007). Sub-
stantive content knowledge refers “to the concepts, principles, laws, and models in a par-
ticular content area of a discipline (SnBarnes, 2007).” Syntactic content knowledge is the
“set of ways in which truth or falsehood, validity or invalidity are established” (Schwab,
1978, cited in Shulman, 1986). In practice, teachers should not only be able to define the
acceptable truths in a domain, but also to explain, in theory and in practice, why these
truths are worth knowing and how they relate to other propositions in and outside the
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discipline.

Both types of subject matter knowledge (substantive and syntactic) are needed for
teachers’ development of PCK to create adequate understanding of the nature of the
subject matter and how it should be taught (Jong, 2003). It is therefore assumed that
mathematics teachers with good PCK have both types of subject matter content knowledge
and are able to apply this knowledge in making the topic understandable to learners. This
assumption is given empirical support by Wu (2005), who indicated that teachers with
good PCK have a firm command of subject matter knowledge and are able to design
instructional materials that allow learners to grasp what they teach. Muijs and Reynolds
(2000) call them effective teachers.

Other scholars, such as Carpenter, Fennema, Petterson and Carey (1988), Even (1993),
Manouchehri (1997), Van Driel et al. (1998), Halim and Meerah (2002), Tsangaridou
(2002), Viri (2003) and Hill (2008) have studied the influence of subject matter knowledge
on the PCK of pre-service, novice, and expert teachers. These studies reveal that teachers’
content knowledge goes a long way towards determining the level of PCK. Subject matter
content knowledge is a key components of PCK that was assessed in this study.

Methodology

The methodology for the study consisted of two phases. In the first phase, six identified
mathematics teachers undertook a written exercise to assess their conceptual knowledge of
statistics. The results of this exercise were used to select the four best-performing teachers
for the second phase of the study.

The second phase consisted of a concept mapping exercise (CME), lesson observations,
interviews, teachers’ written reports, and document analyses to produce rich detailed de-
scriptions of participating teachers’ PCK in the context of teaching data-handling concepts
at school level. The CME was used to indirectly assess content knowledge and the teachers’
conceptions of the nature of school statistics and how it is to be taught. The qualitative
data obtained were analysed to determine individual teachers’ content knowledge, related
pedagogical knowledge, and how they developed their PCK in statistics teaching. The
analysis was based on iterative coding and categorisation of responses and observations
in order to identify themes, patterns, and gaps in school statistics teaching. Commonal-
ities and differences, if any, in the PCK profiles of the four participating teachers were
determined and analysed.

The validity of the CKE was conducted by giving exercises to the teachers to ascertain
whether CKE could be used to assess their knowledge of school statistics and to select
participants for the study. A concept map was given to the same mathematics teachers
to determine whether the CME would allow them to list topics according to Grades 10,
11 and 12 and arrange them in logical order, such that one topic formed the basal knowl-
edge of the next for each of the grades. Second, they were required to decide whether
the memorandum was appropriate for answering the CME. The interview, questionnaire,
and teacher written reports were validated by mathematics education experts using a set
of criteria to establish whether these instruments contained appropriate information to
determine teachers’ mathematics educational background for developing subject matter
content knowledge in statistics teaching (Ijeh, 2013).
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The reliability of the CKE was established through the Kuder-Richardson split half
procedure (KR-20, KR-21). The reliability index was 0.81. The CME and memorandum
were given to four school mathematics teachers who did not participate in the study and
who were physically located outside the study site to avoid contamination. There were
consistencies in the responses of the mathematics teachers in the anticipated answers of
the CME. The reliability of the teacher interviews, questionnaires, and written reports
was determined by school mathematics teachers who were not involved in the study to
determine the extent to which the instruments were likely to yield consistent responses
(Cresswell, 2008) in terms of assessing the mathematics teachers’ educational background
that may have enabled them to develop their topic-specific PCK in statistics teaching.

3 Result and Discussion

Teacher A was observed teaching histogram construction and box-and-whisker plots in a
step-wise fashion using the recommended mathematics textbooks and work schedule. For
example, when he was asked, ”What learning and teaching support materials do you use in
teaching statistics?” he responded, ”I use classroom mathematics textbooks recommended
by the Department of Basic Education and the work schedule.”

He started the lesson by asking the learners to name the components of measures of
central tendency such as modes, medians, and means of ungrouped data to determine their
prior knowledge of histogram construction. The learners responded: The components of
measures of central tendency are mode, median and mean.

The components of measures of central tendency having been identified, the teacher
and learners prepared a frequency table from the raw data. Using this table, the histogram
was constructed by first drawing its horizontal and vertical axes (see Figure 1). The axes
were labelled with data values on the horizontal axis, and frequencies on the vertical axis.
A scale was chosen by the teacher, who stated that the highest and lowest values of the
frequencies and data values, as well as the dimensions of the graph paper provided, had
been considered. Next, the bars of the histogram were drawn by joining the line of best fit
(see Figure 1). Teacher A’s lesson showed that he had adopted a rule-oriented procedural
approach to teaching histogram construction.

Figure 1 : A histogram constructed by the teacher and learners during lesson

In teaching the construction of box-and-whisker plots, he gave further evidence of using
procedural knowledge, focusing primarily on rules and algorithms, rather than concep-
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tual knowledge. The procedural approach requires simply plugging the data into the
appropriate formulae, and then working out the correct values of the quartiles for the
box-and-whisker plots (see Figure 2). For example , using the formula; Q1 = W to
calculate the position of Q1; Q1 = 20; Q2 = 23 and Q3 = 27,, all the values were obtained
from the ogive that the learners had been working on. The most challenging aspect for this
teacher was knowing how to move from an algorithmic stage to a conceptually meaningful

one as far as the students’ learning was concerned.
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Figure 2 : A box-and-whisker plot constructed with the values Q1 = 20; Q2 = 23 and
Q3 = 27.

However, he used a conceptual teaching approach during the lesson and demonstrated the
mathematical connections and relationships between ogives and box-and-whisker plots by
describing how quartiles were obtained from the ogive and used in the construction of
the box-and-whisker plot (see Figure 2), the relationships between the ogive and box-and-
whisker plot, and the calculation of the first, second, and third quartiles. A description of
the number line on which the box-and-whisker was drawn, with its mathematical connec-
tions, were also elucidated during his lesson (see Figure 2). A conceptual-based instruc-
tional approach endeavours to provide the reasons that make algorithms and formulae
work (Peal, 2010). The emphasis is placed on the learners’ understanding of the relation-
ships and connections between important statistical concepts such as the use of quartiles
to construct the box-and whisker plots on a number line (see Figure 2). Overall, Teacher
A implemented more of a rule-oriented procedural knowledge approach in teaching his-
togram and box-and-whisker plot construction than a conceptual one. To summarise, he
used both knowledge approaches except that one was dominant.

Through non-verbal cues of nodding their heads, the learners indicated that they
grasped the lesson on histogram construction through the use of conceptual knowledge
better than when Teacher A adopted a rule-oriented approach. This observation was
supported by the fact the learners were able to recall and apply the procedures posed
by him. For example, the learners calculated the percentage of learners in the age group
of (26-40) years as 37% using the frequency table and histogram that was constructed
(Figure 1).

Teacher A’s preference for the use of procedural knowledge in teaching histograms was
confirmed in the learners’ workbooks (document analysis) and during the interview. It
was discovered that the learners had written down the teacher’s rules or steps on how
to construct histograms and box-and-whisker plots, as well as the diagrams of histogram
and box-and-whisker plots. Teacher A might have adopted the use of procedural knowl-
edge because the construction of histograms which demands that specific procedural rules
must be followed, is consistent with a conceptual understanding of the term. In studies
conducted by Flockton, Crooks and Gilmore (2004) and Leinhardt et al (1990) on graph-
ing, they stress that the construction of graphs requires a sequence of drawing the axes,
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choosing the scale, labelling the axes, plotting the points, and joining the lines of best fit.
The order of the steps, in the case of Teacher A, demonstrated the required knowledge
and skills for histogram construction.

Figure 3 : An example of an incomplete classwork exercise on histogram construction
due to incorrect scaling of the data axis.

As observed, the learners experienced learning difficulties, particularly labelling the data
axis with incorrect scales, which could mean that he possibly presented his lesson in a
limited way, that is, solely procedurally, without providing the reasons underlying the
procedures and clarifying the relationship between concepts (a conceptual knowledge ap-
proach) in histogram construction (see Figure 3).

During class work, the learners tried to draw a histogram, which could not be ac-
commodated on the graph paper provided because they scaled the data axis incorrectly
(see Figure 3). It may be said that Teacher A’s PCK in terms of subject matter content
knowledge presentation did not always reveal the required variety of ways of presenting
the data handling topics to his learners for ease of access. In some instances, he demon-
strated the use of both procedural and conceptual knowledge in teaching histograms and
box-and-whisker plots, but he predominantly used a set of algorithms to demonstrate
graph construction. In the main lesson on histogram and box-and-whisker plots, he dis-
played factual knowledge, procedural proficiency, and conceptual understanding of the
data handling topics that were taught.

4 Teacher B

Teacher B planned and taught his statistics lessons on bar graphs and ogives from the
recommended mathematics textbooks and work schedules. He used a predominantly rule-
driven formal procedural approach to statistical graphs (see Figure 4). As observed, in
starting his lessons he tried to identify learners’ prior knowledge of the new topic. For
instance, he introduced bar graph construction and interpretation with a pre-activity that
assessed learners’ understanding of the way in which to prepare a frequency table. For
example he asked,prepare a frequency table of the following scores: 2, 8, 4, 5, 5, 6, 4,
7, 5, 6. His use of pre-activities as diagnostic strategies to identify learners’ pre-existing
knowledge was also attested to in his responses to the teacher interview, questionnaire,
and written reports.

Teacher B taught graphical constructions of bar graphs and ogives according to the
learning outcomes of data handling as stated in the mathematics curriculum (DoBE, 2010).
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These outcomes require that learners should be able to use appropriate measures of central
tendency and spread to collect, organise, analyse, and interpre prepare a frequency table
of the following scores: 2, 3, 4, 5, 5, 6, 4, 7, 5, 6.t data, in order to establish statistical
and probability models for solving related problems (DoBE, 2011). Teacher B followed
precisely the order in which the learning outcomes were stated in teaching his learners
how to construct bar graphs and ogives. In practice this meant, as observed in his lesson,
drawing the axes, choosing the scale, labelling the axes, plotting the points, and joining
the line of best fit - in that order (see Figure 4). Teacher B demonstrated his PCK for
drawing bar graphs in line with the sequence described.

Figure 4 : Bar graph of the scores of learners in test on how to construct, analyze, and
interpret a bar graph.

Flockton et al (2004) confirm that for a person to understand a graph, he or she should
be able to use the construction skills of drawing the axes, labelling the axes, plotting the
points, and joining the line of best fit to construct a graph.

Teacher B’s assumed PCK on bar graphs and ogive constructions could be charac-
terised as procedural in terms of his lesson planning and teaching approach. Teacher B’s
predominant use of a formal procedural approach was also triangulated in the analysis
of his learners’ workbooks (document analysis). The learners drew the bar graph and
wrote down the teacher’s steps on how to construct bar graphs and ogives. Teacher B
might have been influenced to adopt a formal procedural approach because of the learning
outcomes of data handling as laid down in the Curriculum and Assessment Policy State-
ment (CAPS) (DoBE, 2012). Besides, the construction of bar graphs and ogives demands
specific procedural rules (Flockton et al, 2004 and Leinhardt et al, 1990).

Having said that, when the teacher merely taught them the rules for constructing bar
graphs, some learners experienced misconceptions, confusing bar graphs with histograms,
and histograms with ogives. Teacher B can be said to have presented his lesson in a limited
way with insufficient explanations of how to choose the scales of grouped data (consisting
of histogram, frequency polygon, ogive, and scatter plot) that are used to analyse and
interpret large data. Further, Teacher B seems not to have the flexibility to present the
topics to the learners in different ways because his lessons were presented solely according
to a procedural knowledge approach.

A detailed description of the construction of bar graphs and ogives using a conceptual
knowledge approach would have been ideal in presenting the lesson and would have avoided
possible misconceptions and learning difficulties that the learners encountered in the lesson.
Conceptual knowledge involves understanding mathematical ideas and procedures and
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includes basic arithmetic facts (Engelbrecht, Harding & Potgieter, 2005). It is rich in
relationships among important mathematical concepts such as calculating the quartile
positions and locating the quartile itself on the ogive, class intervals and boundaries,
frequencies, and cumulative frequencies of an ogive. But Teacher B’s teaching of bar graphs
and ogives was dominated by a procedural knowledge approach which involves following
a rule or procedure without a detailed explanation of the relationships and mathematical
connections between the concepts being learned, such as calculating a quartile position
and locating it in an ogive. Thus, the teacher is probably unable to present his lesson in
a variety of ways to ensure better comprehension and understanding.

Baker et al (2001) and Bornstein (2011) note that a teacher who is unable to present
mathematics content to learners in a variety of ways tends to expose them to learning
difficulties, such as constructing a histogram instead of an ogive because of the use of an
incorrect scale for labelling the data axis as was observed during the lesson on ogives.
A combined approach of both procedural and conceptual knowledge would have helped
to deepen the learners’ understanding and would have avoided the misconceptions and
learning difficulties that the learners had developed during the lesson, as suggested by
Engelbrecht, Harding & Potgieter (2005).

5 Teacher C

Teacher C also displayed evidence of a procedural rather than a conceptual knowledge
approach in his lessons on the construction of ogives and scatter. Repetition. Schneider
and Stern (2010) view conceptual knowledge as mastery of the core concepts and principles
and their interrelations in the mathematics domain; knowledge rich in relationships. On
the other hand, procedural knowledge can be viewed as consisting of rules and procedures
for solving mathematics problems. Procedural knowledge in mathematics allows learners
to solve problems quickly and efficiently because it is to some extent automated through
drill work and practice.

Teacher C demonstrated the requisite knowledge of and skills for constructing ogives
and scatter plots in a step-by-step manner. For example, in his teaching on ogives, he
moved from algorithmic to a conceptually meaningful stage. He began his lesson on ogives
by trying to identifying the learners’ prior knowledge of the concept of ogives through
oral questioning, and the accuracy of the homework on histograms that had previously
been taught (see Figure 5). Subsequently, using a cumulative frequency table prepared
by the learners, an ogive was constructed by first drawing its horizontal and vertical axes.
The data values were labelled on the horizontal axis (the upper class boundaries), and
the cumulative frequencies on the vertical axis (see Figure 5). A scale was chosen by the
teacher, who indicated that he had chosen it by considering the highest and lowest values
of the frequency and data values. The points were plotted and the line of best fit was

joined to produce the ogive (see Figure 5).
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Figure 5 : An Ogive of age distribution of sample of 100 cars owners park in a car park.

This process of constructing an ogive from grouped data depicted a rule-oriented pro-
cedural approach. His procedural knowledge in teaching ogives (which was understandable
to his learners) is believed to have been developed as a result of five years’ mathematics
teaching experience, and using the recommended lesson plan and work schedule of the
Department of Education (DoE, 2010). The same procedural approach was used to teach
scatter plots. Some of the factors that may have contributed to Teacher C teaching scatter
plots in a step-wise manner, following a particular order or sequence, could be attributed
to the way in which the learning outcome of data handling is stated in the mathematics
curriculum (DoBE, 2010). The document indicates that competency in graphing requires
that the learner is able to construct, analyse, and interpret statistical and probability
models to solve related problem. The construction of graphs, as stated, entails scaling,
drawing axes, labelling the axes, plotting points, and joining the line of best fit (Flockton
et al, 2004; Leinhardt et al, 1990). Teacher C followed this sequence for teaching scatter
plots. In the lesson he gave a full explanation of how to construct a scatter plot before
demonstrating how to analyse and interpret it. The learners did their classwork in groups.
They were presented with exercises on scatter plots, and were requested to analyse and
interpret the plots to determine whether there was a correlation between the variables X
and Y.

Teacher C’s preferred procedural approach to teaching the topic was confirmed in
the learners’ workbooks, portfolios, teacher interview, and written reports. Owing to
the limited use of conceptual rather than procedural knowledge — namely knowledge of
the core concepts and principles and their interrelations in teaching ogive and scatter
plots, some learners displayed misconceptions and learning difficulties in their analysis
and interpretation of scatter plots. For example, a negatively correlated linear scatter
plot was interpreted by the learners as having no correlation because of an outlier that
lay far from the line of best fit (see Figure 6).
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Figure 6 : A negatively correlated scatter plots.

This misconception could be attributed to the rule-oriented approach that had been
adopted to describe the construction of scatter plots which did not allow for sufficient
explanation of the interrelationships among the data values, frequencies, lines of best fit,
and outliers (Ijeh, 2013). The learning difficulty of interpreting a negatively correlated
scatter plot as having no correlation owing to outliers may further indicate that in teaching
construction of scatter plots the teacher did not explain an outlier, line of best fit, type
and nature of correlation, and how the presence of an outlier affects the correlation of the
X and Y variables of the scatter plot.

What can be gleaned from the discussion so far is that teachers need to possess deep
conceptual understanding of the mathematics concepts that they are teaching and must
be able to illustrate why mathematical algorithms work and how these algorithms can be
used to solve problems in real-life situations (Nicholson & Darnton, 2005). The learning
difficulties experienced by the learners were subsequently addressed by Teacher C during
post-activity discussions (instructional strategy); a strategy that was frequently used by
him during his lessons on ogives and scatter plots.

An important task of any teacher is to attempt to transform the content to be taught
in such a way as to make it comprehensible to learners (Mohr & Townsend, 2002). Teacher
C also displayed evidence of a conceptual approach by providing the reasons that make the
algorithm and formula work, and by explaining the relationships between important sta-
tistical concepts as well as the mathematical connection between them during the lessons
on ogives. It was significant that more learners seemed to possess a better grasp of the
topic and were able to construct and interpret ogives by means of this approach rather
than a procedural one. In the particular lessons observed, Teacher C explained the math-
ematical connections and relationships between quartile positions and the quartiles and
how quartiles can be used to interpret ogives. In doing so, Teacher C could be regarded
as having displayed adequate subject matter content knowledge of school statistics.

6 Teacher D

In Teacher D’s observed lessons, it was noted that he had planned and taught his lessons on
bar graphs and histograms using the Department of Basic Education’s mathematics work
schedule, and the recommended textbooks as sources of information. This was confirmed in
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the teacher questionnaire and interview. For instance when he was asked, “What learning
and teaching support materials do you use in teaching statistics?” Teacher D responded,
“I use classroom mathematics by Laridon et al, 2006 and the work schedule.”

During his teaching of bar graph and histogram construction, he used more of a proce-
dural approach to teaching bar graphs and histograms than a conceptual one. For example,
Teacher D taught the lesson on bar graphs in a step-by-step manner, beginning with pre-
activities to identify the learners’ prior knowledge of bar graph construction, followed by
the preparation of a frequency table compiled by the learners using a familiar daily life
example (see Figure 7). In this case, a frequency table was prepared of the number of
cars in a car park according to their make. Next, with the help of the frequency table,
a bar graph was constructed by drawing its horizontal and vertical axes and labelling
them appropriately. A scale was chosen by the teacher with the explanation that this was
done by considering the highest and lowest values of the frequencies and the companies
that manufactured the cars. Next, the points were plotted and the line of best fit was
joined to produce the bar graph (see Figure 7). The teacher’s specific strategy for teach-
ing bar graph construction followed a rule-oriented procedural approach using procedural
knowledge.

Figure 7 : Bar graph showing the numbers of makes of cars in a car park.

Engelbrecht et al (2006) describe the procedural knowledge approach as “following a rule
or procedures flexibly, accurately, efficiently and appropriately in completing a given task”.
For example, in constructing a statistical graph, a procedural knowledge approach requires
a series of actions such as drawing the axes, choosing the scale, labelling the axes, plotting
the points, and joining the line of best fit. But what may sometimes be challenging is
knowing how to move from the procedural stage to a conceptually meaningful one in terms
of student learning.

As with the other teachers, Teacher D’s procedural knowledge may have been developed
over his 15 years of teaching mathematics in high school, using the recommended lesson
plan and work schedule for statistics (DoBE, 2010). It could be suggested that although
Teacher D possesses adequate ways of presenting bar graph construction to his learners,
his PCK may be limited in the sense that he presented his lesson procedurally, an approach
that was not always responsive to the learners’ needs. Consequently, some of the learners
constructed the classwork task without leaving spaces between the bars of the graph. The
inability to consider the consistency of spaces between the bars of a graph during lesson
presentation resulted in learning difficulties during classroom practice.
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According to Shulman (1987), representation involves a teacher thinking through key
ideas and identifying alternative ways of presenting them to learners. It is a stage in
which suitable examples, demonstrations and explanations are used to build a bridge be-
tween the teacher’s comprehension of the subject matter and what is required for the
learners (Ibeawuchi, 2010). Multiple forms of representations are highly desirable if one
is to be successful in the teaching process (Rollnick et al, 2008). Teacher D, in certain
graphing topics, displayed evidence of an alternative conceptual knowledge approach in
teaching histograms. Engelbrecht et al (2005) describe a conceptual knowledge approach
as “involving an understanding of mathematical ideas and procedures consisting of the
knowledge of basic arithmetic facts”. It is knowledge rich in relationships and under-
standing of important statistical concepts in bar graph and histogram constructions. In
the lesson observed, Teacher D explained in detail the meaning of a histogram. Accord-
ing to him, “a histogram is a graphical representation, showing a visual impression of
the distribution of grouped data. It consists of tabular frequencies shown as adjacent
rectangular bars, erected over discrete intervals, with an area equal to the frequency of
the observations in the interval. Unlike the bar graph, a histogram is used to represent a
large set of data (e.g. a population census) visually, but with no spaces between the bars”.
His conceptual approach (presumably PCK) to teaching the construction of a histogram
enhanced conceptual understanding of the topic as the learners seemed to be satisfied with
Teacher D’s conceptual explanation of how to construct a histogram after they had expe-
rienced misconceptions and learning difficulties in labelling the data axis. They displayed
non-verbal cues of nodding their heads in agreement with the teacher’s explanation.

From the lessons observed with Teacher D, he used a procedural rather than a concep-
tual knowledge approach. His preferred use of this approach was confirmed in the docu-
ment analysis of the learner workbooks and written reports. The learners had completed
the diagrams on bar graphs and histograms efficiently, with indications of the procedures
that had been adopted in constructing these statistical graphs. Star (2002) argues that it
is important for practising teachers to possess both kinds of knowledge in order to impart
teaching to the learners in a meaningful way. The use of both a rule-oriented procedural
and a conceptual knowledge approach reveals that teachers are looking for ways of making
the teaching of bar graphs and histograms comprehensible and accessible to their learners.
Moreover, the construction of graphs demands that a particular order of actions should
be followed, consistent with conceptual understanding. Teacher D can therefore be said to
possess and demonstrate the required knowledge of bar graph and histogram construction.

7 Conclusion and Recommendation

The four participating teachers taught statistical graphs predominantly using procedural
knowledge and less frequently conceptual knowledge. The use of procedural knowledge was
to some extent dictated by the nature of the topic which requires learners to be able to
collect, organise, analyse, and interpret statistical and probability models to solve related
problems (DoBE, 2010). A second factor that leads to the use of procedural knowledge
is the way in which statistical graphs should be constructed which involves drawing axes,
choosing scales, labelling axes, plotting points, and joining the lines of best fit. Other
ways in which the teachers demonstrated the subject matter content knowledge they pos-
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sess, included the frequent use of mathematics textbooks and CAPS documents. They

develop additional subject matter content through using the above-mentioned resources

and attending content knowledge workshops. This study has provided a critical analysis

of the PCK (subject matter content knowledge) that the selected mathematics teachers

demonstrated during the teaching of statistics to enhance continuous improvement in the

development of teacher education programmes for in-service and pre-service mathematics

teachers.
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One of the best known applications of Linear Algebra is method of fitting a function
to exponential data called the method of least squares.

Consider an experiment involving two measurable variables x and y where y is ap-
proximately at least a linear function of x. Assume that we have some observed values of
the variables « and y as (a1,b1),..., (an,by) in the zy-plane. If they are really in a linear
relation and the data were free from error they will lie on a straight line whose equation
can be written. But in practise, it is not the case often. So we need to find a straight line
which ‘best fits’ the given data. Least squares arise in seeking the best fitting line.

Consider the relation y = cx 4+ d. Condition for the line to pass through the points are

ca1+d=by,...,can +d =0,

Most of the cases, these equations will be inconsistent. So we look for reals ¢ and d which
come close to satisfying this linear system in the sense that the total error is minimized.
A good measure of total error is

(car +d—b1)* + -+ (can +d — by)?

This is the sum of squares of the vertical deviations of the line from the data points.
Squares are taken to avoid negative signs. So the line fitting problem is just a particular
instance of a general problem about inconsistent linear systems.

Suppose we have a linear system of m equations in n unknowns x1,xs,...,x,; AX =
B. Since the system is inconsistent, the problem is to find a vector X which minimizes
the length of the vector AX — B or a better deal, its square E = [|[AX — B||%.

A vector X which minimizes F is called a least squares of solution of the linear system
AX = B. A least squares solution is an actual solution if the system is consistent.

Normal System

Consider AX = B, E = ||AX — B||?>. To minimize E.
I b1

n
Put A = (aij);nj’zl , X=|:1], B=|:]. Thei"entryof AX—Bis (Z aijxj> -
B} ]
Tn, b, ’
b;. Therefore
- 2
E = HAX — BH = Z (Z Qi — bl)
i=1

91



which is a quadratic function of x1, o, ..., x,. Now we use several variable calculus to get
the absolute minima. First we find the critical points of the function F.

aE m n
% = 2 E aijmj — bi Al — 0
ki \j=1
m n m
= E E Qijxj * Qi = E aikbi, k:1,2,...,n
i=1 j=1 i=1
This is a new system of linear equations in x1,...,x, whose matrix form is

(ATA) x =A"B

It is called the normal system of the linear system AX = B. Solutions of normal system
are the critical points of E. Surely E does have an absolute minimum because it is a
continuous function with non-negative values. Since E is unbounded when |x;| is large its

absolute minimum must occur at critical points. Therefore
Theorem. Every least square solution of AX = B is a solution of the normal system

(ATA)X = ATB.

Question

(a) What if the normal system is inconsistent ? (Not possible if so no progress).

(b) Even if the normal system is consistent, will all solutions be least squares solutions
?

To resolve this we look at some Linear Algebra results.

Consider an m x n real matrix A. [We can consider it as a linear map from R" to R™.]

aii ai2 ain
A— a1 a2 a2n
aml  Am2 Qmn,

Let S be the vector space obtained as the span of column vectors of A, it is called the
column space of A. Note that it is a subspace of R™. Nullspace of A is N(A) = {X € R"}.

Theorem. Let A be a real matrix. Then
(i) N(A) = (column space of A7)+
(ii) N(AT) = (column space of A)+
(iii) column space of A = (N(AT))J'
(iv) column space of AT = (N(A))*

Here if V C R™ then V+ = {u € R" | (u,v) = 0 for all v € V'}. Moreover, V & V1 = R".
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Note :

If A:R” — R™ then AT : R™ — R"™ and column space of AT is a subspace of R” and null
space of AT is a subspace of R™.

Let A be having all its columns linearly independent. So they form a basis for the
column space S of A. Projection of a vector X on the column space S is Y where
X-Y e St Thatis (X —Y) L S = (X —Y)-column vectors of A = 0. So find a vector
Y such that (X —Y) - column vectors of A =0. Then Y is a projection of X on S.

Theorem. Let A be a real m x n matrix. Then AT A is a symmetric n x n matrix whose

null space equals the null space of A and whose column space equals the column space of
AT,

Proof. We have (ATA)T = ATA. So AT A is symmetric. Let S = column space of A.
Then N(AT) = S+,

X e (ATA) & (ATAX =0
e AT(AX) =0
& AX = N(AT)

That is AX € S*+. But AX € S. Since S is the span of columns of A, SN S+ = {0},
hence AX =0= X € N(A). If X € N(A) then AX =0= ATAX =0= X € N(AT A).
So N(ATA) = N(A). Column space of ATA = (N(AT A))* = (N(A))* = column space
of AT, O

Theorem (Fundamental Theorem about the MLS). Let AX = B be a linear system of
m equations in n unknowns.

(a) The normal system (AT A)X = AT B is always consistent and its solutions are exactly
the least squares solutions of AX = B.

(b) If rank A = n, then AT A is invertible and there is a unique least square solution of
the normal system, namely
X =(ATA)1ATB

Proof. We have column space of AT A = column space of AT. Therefore, column space
of [ATA|ATB] = column space of ATA. Since the extra columns of ATB is a linear
combination of the columns of AT and thus belong to the column space of AT A. So the
rank of the cofficient matrix and the rank of the augmented matrix of the normal system
are the same. This implies that the normal system is consistent.

Now we show that every solution of the normal system is a least square solution of
AX = B. Suppose X1, X3 are two solutions of the normal system. Then AT(X; — X5) =
ATB - ATB =0. SoY = X; — X5 € N(ATA) = N(A) = AY = 0. Now AX; — B =
A(Y + X3) — B= AXy — B= E = |AX — B||? has same value for X = X; and X = X,.
Thus all solutions of the normal system give the same error vlaue for F. Since every least
square solution of AX = B is a solution of the normal system, it follows that the solutions
of the normal system constitute the set of all least squares solution, as claimed.

Let rank A = n. Then rank ATA = n. Therefore AT A is invertible and so X =
(AT A)~'AT B is the unique solution. O
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Geometry of Least Squares Process

Let AX = B; A is an m x n matrix and let S be the column space of A. Least squares
solution are the solutions of the normal system AT AX = AT B. In otherwords

AT(B-AX)=0
= (B—AX)e N(AT) =5+
Therefore X is a least square solution of AX = B if and only if (B — AX) € S*+. Now

B=(B—-AX)+ AX and AX € S. That is B can be uniquely written as the sum of its
projections on S and S+ since (B — AX) € S+ and AX is the projection of B on S. Thus

Theorem. Let AX = B be an arbitrary linear system and let S be the column space of
A. Then the column vector X is a least square solution of the system AX = B if and only
if AX is the projection of B on S.

Optimal Least Squares Solutions

If rank A < n there will be infinitely many least square solutions. Now to see how one can
choose one solution that is in certain sense optimal.

Natural way is to select one least square solution with minimal length. So optimal
least square solution of AX = B is a least square solution X whose length || X| is as small
as possible.

Method to find optimal least square solution

Let U = N(A) = (column space of AT)+. Suppose X is a least square solution of AX = B.
Then there exists a unique expression X = Xy + X; where X € U and X; € UL. Then

AX = AXo+ AX; = AXy (since zg € N(A))
Thus AX — B= AX; — B. So X; is also a least square solution of AX = B. Now

1X11% = 1| X0 + X1
= (Xo+ X1)" (X0 + X1)
= XI'Xo+ XxTx,
= [[Xoll + 1 X[
Therefore
1117 = X0l + 1X1 > > [1X1]f?

So if X is an optimal solution, then || X|| = || X1|| so that || Xo|| = 0. Thus X = X; € U*.
So optimal least square solution must belong to UL = column space of AT. Now we show
that there is a unique least square solution in U~.

Let X, X be two solutions in UL. Then AX, AX both equal to projection of B on the
column spaces of A. We have

AX-X)=0=X—X e N(4)
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But
X, XeUt=X-XecUnUt={0}=X=X

Hence X is the unique optimal least square solution belonging to U+. Thus we have

Theorem. A linear system AX = B has a unique optimal least square solution namely
the unique vector X in the column space of AT such that AX is the projection of B on
the column space of A.
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Abstract : This paper reports on the APOS (Actions, Processes, Objects and
Schema) approach to difficulties experienced by first year engineering students at a
University of Technology in constructing the concept of the factor theorem. A pro-
posed initial genetic decomposition (IGD), describing the mental constructs which
students are supposed to make in order to understand the chain rule was suggested.
Instructional treatment followed the activities, classroom discussions and exercises
(ACE) model proposed by Dubinsky (1991). This paper in particular presents the
discussions on interviews with group representatives seeking clarity on responses to
four exercises on differentiation of trigonometric functions done collaboratively in class
on the understanding of the chain rule. In a class of 78, students worked collaboratively
in 12 groups of about six participants each. The interviews in this study were con-
ducted with selected individuals from the different groups for clarity and explanations
on written responses. This was done to get feedback on how the students perceived
the chain rule and to fulfil the verification purpose where the group response was clar-
ified. These interviews were semi-structured and questions were open-ended. They
followed a guide designed to elicit the students’ understanding of the chain rule based
on the tasks given. Analysis of results revealed to a greater extent a process under-
standing of the chain rule concept and when using the Triad (intra-, inter- and trans-)
mechanism to explain the interview discussions, it was revealed that most students
operated on inter- stage. Differentiation as a process was complete with most groups
but they struggled with basic algebraic manipulations, understanding of composition
and decomposition of functions.

Keywords : APOS, genetic decomposition, trigonometric functions, chain rule, calculus
and Triad mechanism

1 Introduction

The main issue in this paper is how students conceptualise mathematical learning in the
context of calculus with specific reference to the chain rule. The paper focuses on how
students use the chain rule in finding derivatives of composite functions (including trigono-
metric ones). The research was based on the APOS (Action-Process-Objects-Schema)
approach in exploring conceptual understanding displayed by first year, University of
Technology students in learning the chain rule in calculus. Dubinsky & McDonald (2001)
suggested that APOS theory as a tool can be used objectively to explain students’ dif-
ficulties with a broad range of mathematical concepts and recommended ways in which
students can learn these concepts. They further argued that this theory can point us
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towards pedagogical strategies that lead to marked improvement in (1) student learning
of complex or abstract mathematical concepts, and (2) students’ use of these concepts to
prove theorems, provide examples, and solve problems.

A schema for a certain mathematical concept is an individual’s collection of actions,
processes, objects and other schemas which are linked by some general principles to form a
framework in the individual’s mind that may be brought to bear upon a problem situation
involving that concept (Dubinsky & Mc Donald, 2001). Asiala et al, (2004) asserted that
an individual’s schema is the totality of knowledge which for her is connected consciously
or unconsciously to a particular mathematical topic, for example an individual may have
a function schema, derivative schema, chain rule schema.

The chain rule is used to find the derivatives of composite functions. Kaplan (1984)
referred to it as a function of functions. A composite function is a function that is composed
of two or more functions. For the two functions f and g, the composite function or the
composition of f and g, is defined by

(fog)(z) = flg(z))

The function g(x) is substituted for x into the function f(z). For example, the func-
tion h(z) = (3z — 9)* could be considered as a composition of the functions, f(z) = x*
andg(z) = 3z — 9. However, it could also be written as a composition of f(z) = (3x)*and
g(z) = x — 3. Often, a function can be written as a composition of several, different
combinations of functions. One must be careful to consider the domain of the respective
functions.

The chain rule allows us to find the derivative of composite functions. The chain
rule states that if f and g are differentiable functions and F(z) = f(g(x)), then F is
differentiable and the derivative of F is given by F'(z) = f'(g(z))d'(z) = (fog)'(z)

In Leibniz notation, if y = f(u), u = g(z) and y and w are differentiable functions,
theng—i’ = %g—;. Kaplan (1984) chose to call this rule, the composition rule since the
function to be differentiated is a composition of other functions. The same applies when
a function is a product we use the product rule to get its derivative. The first year
syllabus deals with a combination of a maximum of five functions that can be used in the
composition. We can have more than one composition in a problem. The students should
now be able to decompose the given function into its elementary pieces one step at a time.
Kaplan then proposed the following table of derivatives with all possible compositions of
functions. All of the formulas in the table were derived from the general chain rule with
f(x) as one of the main functions, z";e”;In x;sin x; cos x and an arbitrary function g(z).

The chain rule is of important use to other areas of calculus. These include: (1)
Finding the marginal Physical Productivity Function of the workers in Business economics
(28) for P = 10(3z + 2)® — 10, (2) Revenue changing when given a revenue function like
R(z) = 25(x+2)?+20x — 5,(3) Higher order differentiation used to calculate demand, cost
and profit in business and (4) Calculations of rates on physical body relationships including
body weight and surface area, cell growth, blood flow and other physical quantities. It
is important for the students at this stage to know which formula to use and how to
use it without computing the derivatives of the component functions. They must be
able to identify whether a constant times a function, sum of functions, product, quotient,
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composition or piecewise functions are given in the problem. The implication here is that
they should be well versed with function algebra.

The chain rule is included in several studies in mathematics education literature. Some
of them are about teaching of the chain rule (Lutzer, 2003; Mathews, 1989; Thoo 1995;
Uygur & Ozdas, 2007) while others are on understanding the rule. Uygur (2010) who
studied the cognitive development of applying the chain rule through the three worlds of
mathematics suggested that the instructional way of presenting the chain rule changed
focus to encourage students to obtain the chain rule with some life-related problem sit-
uations. In contrast, verifying the chain rule by using either or both graphing software
or graphics calculator and an algebraic approach was considered for developing teaching
and learning strategies of the chain rule in the mathematics teaching program of South
Australia (SACE Board of South Australia, 2009). Uygur (2010) further noted that as
much as there was an absence of studies on structural development of the chain rule,
there was also a need for a study on students’ applying the chain rule to second order
derivatives and to two-variable composite functions. It was noted also, that the prerequi-
site knowledge of composite function is another significant notion for applying the chain
rule by raising awareness of the relation among various cases. Uygur inferred that vari-
able notion is another significant prerequisite knowledge in the embodied world of the
cognitive development of the chain rule. Novotna and Hoch (2008) had indicated the im-
portance of structural knowledge in applying the chain rule in the cognitive development
of mathematical concepts. Students’ application of the chain rule was analyzed within
Tall’s (2007) framework containing three levels of understanding which considered sym-
bolic development. Their study addressed the structural development of the chain rule.
On the contrary this study focused on the discussion of the types of structures constructed
by students when learning the chain rule with the view to clarifying their understanding;:
(i) of the composition of function and (ii) of the derivative.

2 Theoretical Framework

The main mechanism for an individual to obtain new mathematical meaning is for him/her
to construct mental representations of direct experiences relevant to that concept. A
structured set of mental constructs which might describe how the concept can develop in
the mind of an individual is called the genetic decomposition of that particular concept.
The initial genetic decomposition (IGD) of the concept of the chain rule suggested below
guided the researcher’s teaching instruction in class and the construction of the interview
and discussion tasks. APOS ascertains that to understand a mathematical concept begins
with manipulating previously constructed mental or physical objects in the learner’s mind
to form actions; actions would then be interiorised to form processes which are then
encapsulated to form objects (Dubinsky, 1991). These objects could be de-encapsulated
back to the processes from which they are formed, which would be finally organized in
schemas. Understanding the chain rule was explored in relation to the schema relevant
to it. For an elaboration of these concepts refer to Maharaj (2010, p43).

This study has therefore adopted the APOS approach (Dubinky, 1991a), based on in-
tuitive appeal as there has been little empirical research done documenting its impact on
students’ conceptual understanding of the chain rule in the African continent. Also, APOS
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has been used in research focusing on understanding of various mathematical concepts,
(Pascual, 2004; Sfard, 1991; Tall, 1994; Dubinsky, 1991a; De Vries, 2001; Gray & Tall,
2002; Clark et al, 1997). This study was conducted according to a specific framework for
research and curriculum development in advanced mathematics education, which guided
the systematic enquiry of how students acquire mathematical knowledge and what in-
structional interventions contribute to student learning. The framework consists of three
components: theoretical analysis, instructional treatment, and observations and assess-
ment of student learning as proposed by Asiala et al (2004) and illustrated in Figurel.

Theoretical Analysis

/ ﬂ\‘\
Collection and Analysis of - Design and implementation of
Data Instruction

Figurel: Theoretical Framework for Research

Theoretical analysis includes the initial genetic decomposition of the concept which
specifies the mental constructs which a learner is expected to have in order to understand
the chain rule. The initial genetic decomposition of the chain rule was assumed as:

For a student to have his or her function schema

(a) He/she had developed a process or object conception of a function and

(b) Has developed a process or object conception of a composition of functions.
For a derivative schema,

(a) He/she had developed a process conception of differentiation

(b) The student then uses the previously constructed schemas of functions, composition
of functions and derivative to define the chain rule. In this process the student
recognized a given function as the composition of two functions, took their derivatives
separately and the multiplied them.

(¢) The student recognized and applied the chain rule to specific situations. The initial
genetic decomposition is modelled in Figures 2 and 3 in the following section and is
adopted from Jojo (2013).

!

f(z) =2tanzsec® o f (x) = 2tanzsec? zf(z) = tan® z f(z) = tan’ x
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—

Composition of functions;

{process)

Chain rile

Figure 2: Initial genetic decomposition of the chain rule

3 Instructional Treatment

The design and implementation of instructional treatment was based on the initial genetic
decomposition (IGD). The pedagogical approach included three sequential lessons intended
to increase the students’ understanding of the chain rule to the object or schema stages
of APOS. These included revision of function notations, composition of functions and
differentiation of trigonometric using product and quotient rules. The chain rule was
defined for the purposes that the students should not only know it but be able to remember
it, use it and apply it to various problems. Scaffolding was used to assist students to attain
a higher level of understanding by encouraging creative and divergent thinking (Brush &
Saye, 2001, Mcscosker & Diezman 2009). Anghileri (2006) asserts that students actively
construct meaning as they engage significantly within established mathematical practices.
These tools in a mathematics classroom could include diagrams, pictures, technology,
mathematics formulas and hints for an effective solution process.

The principles of effective mathematics teaching drawn from educational theories of Piaget
illustrated that learning required interaction to develop: (1) a deep conceptual understand-
ing, (2) positive relationships and (3) a classroom community. This social interaction leads
to gradual, incremental changes in thought and behaviour of learners and through which
interaction with other learners, allows them to examine, clarify and change their concep-
tual understanding. This study sought to explore how actions, processes and objects of
the chain rule schema could be coordinated as mental structures to enhance the learning
of the concept and access it in situations where it needs to be applied.

Students were provided with activities in class that were designed to induce them to
make the suitable mental constructions as suggested by the initial genetic decomposition.
There were key instruments designed to assess the content knowledge and pedagogical
content knowledge of the student in presenting the mathematics content knowledge (MCK)
and mathematical pedagogical content knowledge (MPCK) regarding the concept of the
chain rule. This study also considered the factors influencing the development of the
lecturer’s knowledge and how the knowledge is related to lecturer performance and student
achievement. The researcher was the lecturer in this study. She had always experienced
problems in teaching this concept.

The chain rule is the underlying concept in many applications of calculus: implicit differ-
entiation, solving related rate of change problems, applying it in the fundamental theorem
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of calculus and solving differential equations. Research (Hassani, 1998) into the nature of
students’ understanding of the concepts underlying the calculus showed significant gaps
between their conceptual understanding of the major ideas of calculus and their ability to
perform procedures based on these ideas. The chain rule states that if g(z) is a function
differentiable at ¢ and f is a function differentiable atg(c), then, the composite function
fog given by (fog)(z) = f(g(x))is differentiable at ¢ and that(fog) (¢) = f (g(c)).g (c).
Cottrill (1999) asserted that: (1) conventional wisdom holds that students’ conception of
the chain rule (as with other rules) is that of symbol manipulation, (2) the conception
of the chain rule appeared to be a straight-forward manipulation of symbols which could
easily be applied in problem situations and (3) concluded that an application based on
symbol manipulation carries a heavy requirement for the function to be given by an ex-
pression, fostering students’ tendencies toward instrumental understanding, where they
are unable to apply the chain rule.

The research aimed to find out whether students can construct an underlying structure
of the chain rule in dealing with composition or decomposition of functions. This focus
was accomplished by: Determining the students’ actual engagement with tasks in groups
and how these tasks link with the expected outcomes highlighted in the initial genetic
decomposition.

Ernest (1991) asserts that Mathematics Education understood in its simplest and most
concrete sense concerns the activity or practice of teaching mathematics. He further
asserts that learning is inseparable from teaching. This process involves the exercise of the
mind and intellect in thought, enquiry, and reasoning. Similarly, the interpretive research
paradigm seeks to explore real human and social situations and uncover the meanings,
understandings and interpretations of the actors involved. It was therefore evident that in
exploring how students conceptualized the understanding of the chain rule, APOS could
be used objectively to (1) explain students’ difficulties with the chain rule and (2) suggest
ways that students can learn the chain rule. More specifically APOS could lead us towards
pedagogical strategies that in turn lead to marked improvement in (1) student learning of
the chain rule and (2) students’ use of this concept to solve problems in calculus.

Literature

Hiebert & Carpenter (1992) asserted that learning mathematics with understanding in-
volves making connections among ideas, and that those connections are considered to facil-
itate the transfer of prior-knowledge to novel situations. With regard to the psychological
approach to learning, the constructivist idea is that understanding is a continuing activity
of individuals organizing their own knowledge structures, a dynamic process rather than
an acquisition of categories of knowing (Confrey, 1994; Gagnon & Collay, 2001; Piaget,
1948/1973; Pirie & Kieren, 1994). According to Bransford, Brown & Cocking, (2000), a
mathematical idea or procedure or fact is understood if it is part of an internal network.
More specifically, the mathematics is understood if its mental representation is part of
a network of representations. They further asserted that the degree of understanding
is determined by the number and the strength of the connections made with previously
acquired mathematics. Thus a mathematical idea, procedure, or fact is understood thor-
oughly if it is linked to existing networks with stronger or more numerous connections.
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It is therefore assumed that well-connected and conceptually grounded ideas enable their
holders to both remember them and see them as part of a larger whole within which each
part shares reciprocal relationships with other parts, (Pirie & Kieren, 1994).

Wiggins, (1993) defined understanding as something different that emerges when we are
required to reflect upon achievement, in verifying or criticizing, re-thinking and re-learning
what we know. Wiggins & McTighe (1998) further identified several inter-related aspects
of understanding including (1) explanation, (2) interpretation, (3) contextual applications,
(4) perspective, (5) empathy and (6) self-knowledge. Not all of these apply to each learning
situation and they are not hierarchical or mutually exclusive. Students who can explain
their ideas justify understanding by making connections and inferences. Those who apply
knowledge demonstrate their ability to use what they have learnt in complex situations.
Lastly, those who show self-knowledge recognize the limits of their understanding.

4 Data collection and analysis

Worksheets with four exercises on the use of the chain rule were issued to 12 groups of
about six students each. There was space provided below each task in the worksheet for
students’ responses. This was done to reinforce the learning that took place in the three
sequential lesson components. The aim was to provide students with opportunities to
make applications of the chain rule they learnt and prepare them for the mathematics in
which chain rule would be applied. The students worked collaboratively. The activities
were designed to foster the students’ development of mental structures called for in the
initial genetic decomposition. The genetic decomposition assumed the actions, processes,
and objects that play a role in the construction of a mental schema for dealing with the
chain rule.

Whilst working in groups students discussed their results and listened to explanations given
by fellow students. The students worked collaboratively on mathematics tasks designed
to help them use the mental structures that they had built during previous lessons. In
some cases, students worked on a task as a group, whilst in other cases they worked
as individuals and then compared notes, and then negotiated a group solution to the
problem. They then reported their results in the class. During this process, the emphasis
was on: (1) discussions, (2) reflection explanations by the researcher where appropriate,
(3) completion of the tasks by the students, and (4) understanding the use and application
of the chain rule.

As the researcher moved from group to group, she noticed that some students used a lead
pencil to record their responses on the worksheet. They were trying to avoid mistakes
and allow correction of an incorrect response without spoiling the worksheet. In some
groups, after transcriptions of agreed responses, all the members of the group satisfied
themselves that the submitted response was appropriate. They argued from time to time
of the positions where brackets should be inserted. Even after submissions of completed
worksheets, other students continued convincing and teaching the inquisitive students on
how the chain rule works.

It was so interesting to watch the students refering back to their notes in their books
before attempting the questions. Asked about this Zazi, (one group member) answered:
I remember a problem that you did for us, it looked like this one. So I want to compare

102



and then differentiate this one. Although Zazi is operating in the action stage, he needed
to gain experience constructing actions similar and corresponding to differentiating using
the chain rule. The experience of differentiation using the chain rule was built upon
in subsequent activities like those in the worksheet, where he was asked to reconstruct
familiar actions as general manipulations.

The researcher noticed that students in some groups would first copy a task in the work-
sheet onto their books. They would then work on it as individuals after which they
compared their answers. Students argued and agreed upon certain responses. Individuals
justified how they arrived at their responses. This way they taught each other and gave
verbal descriptions of actions taken in their own words. They then repeated the actions
many times with different tasks in their books and in the worksheet. Thus the worksheet
helped the students interiorise the actions.

It was also noticed that most students in different groups were operating in the Intra-
stage of the Triad. They had a collection of rules of differentiation with no recognition of
relationships between them. Those students were helped by others who reflected on using
the chain rule by applying actions to dynamic processes. The latter group had created an
object of the chain rule. At the same time they applied actions on differentiation and as
such the process of differentiating using the chain rule was encapsulated to form an object.
The worksheets were analyzed for meaning which is one of the mechanisms necessary for
understsnding a concept. These included detecting (1) the connections made by students
to other concepts, (2) calculations made using the chain rule, (3) the chain rule technique
used, and (4) mental images on which the chain rule is based.

All the groups applied the chain rule to the first task y = tan?(3x teVertl ) correctly using
the straight form technique although only two out of twelve groups presented a solution
with brackets, when they differentiated the composite function inside the brackets in the
given task. One of the groups who left out the bracket then went on to detach the derivative
3 of 3z from the + sign. This 3 now multiplied the first two functions (see Extract).

Differentiate:
Yy = tan? <3x + em)
d v 1
d_y = 2tan (3x +e x2+1> sec? (336 +e :”2“) .3 eVeitl. 5(352 + 1)*% 2
T
v v/ 1
= 2tan (396 +e x2+1> sec? (336 +e x2+1) R R )}
Va2 +1
v 2
= 6 tan (3x +e x2+1> sec? (336 + e‘/x2+1) peVAH__ 2
2vVax? 4+ 1
= 6tan (395 + ex/x2+1> sec? (335 + e\/x2+1) + oV +1 ;U -
e+

Extract 1: One group’s presentation of task 1

This mistake was not detected by any of the other members of the same group. Those
students struggled with the connection of previously learnt algebraic skills like use of brack-
ets where appropriate and manipulation of algebraic terms in a function. The calculations
presented after differentiating using the chain rule successfully were therefore not correct
for seven out of twelve responses received. The mental images constructed by the seven
groups in using the chain rule were incomplete. Although the actions were interiorized into
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processes, the processes were not encapsulated to objects. This could partly be attributed
to previous knowledge of algebraic skills which were just actions and never interiorized.
According to the Triad students in the said groups saw the chain rule as a procedure
of differentiation which could not be connected or related to other processes applied to
functions. Thus most students operated in the Intra- stage regarding task 1. This concurs
with what Lakof & Nunez (1997) asserted that mathematics begins with direct human
experience and ends there for some people. According to APOS, we observed that some
students could only go as far as the action stage.

The second problem y = (cos’z + e *"®) 2 was presented correctly by nine out of twelve
groups. Only one group avoided the use of the chain rule by squaring the given function
and then differentiating. This was a brilliant idea but still required them to apply the
chain rule on the individual terms, cos'z, 2cos’z e *™Fand €2, They then used straight
form technique to differentiate. Those students were connecting the given function to a
square of a binomial. Thus a part of understanding the concept of the chain rule is a
mental process involving sorting out the given function, dealing with its composition, and
connecting the two to find the derivative. They indicated a process construction of mental
images since they transformed the given function to a trinomial which was operated on

by repeating the actions of differentiation. Their work has been captured in Extract 2.

Y= cos x + 2 cos? SN T 4 25

3 sin x sin x 2sinx

/ . .
y = 4cos® zsinx — 4 cos 2 sin & + 2 cos? £eS T cos x + cos ze

Extract 2: Chain rule application after squaring a binomial

The third task required students to differentiate implicitly using the chain rule. Five groups
out of twelve groups introduced natural logarithms on both sides of the equation before
differentiating. They explained that they connected the relationships of exponentials in
the right hand side function with logarithms which would get rid of the exponent. In this
way they ended up with simple expressions on both sides and thus allowed them to use
the straight form technique of chain rule differentiation (see Extract 3).

Differentiate implicitly

sin(z +y) = 2t

Insin(z 4+ y) = In 2t

Insin(z +y) = 2y + 2°

cosx +y dy dy
Rk A R Y A
~ sin(x + y) [ dx] Yix +
= cot(z + y) 1+% =2 %—1—2
Y de| ~ Y
d d
= cot(z + y) + cot(x + y)é = 2yd—z +2
d
= (cot(x +y) — 2y)£ =2 —cot(x +y)

dy 2 —cot(z+y)
dr  cot(z +y) — 2y

Extract 3: Differentiation using natural logarithms
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Their calculations indicated a full understanding of the use of the chain rule. They op-
erated in the Trans- stage of the triad since they could reflect on relationships between
various objects from previous stages. They displayed coherence of understanding of differ-
entiation rules and composition of functions. Three of the five groups presented responses
of full construction of mental images of the chain rule and a connection between under-
standing of algebraic manipulations of the derivative and function composition. The other
seven groups applied the chain rule directly using the straight form technique and then
processed the resulting function to get the derivative. Two of the responses indicated a
transition from an operational to a structural mode of thinking since they brought the
concept of the chain rule into existence and used it with caution, and preferred it over
other methods of differentiation.

_ s z(z +2)

(% +1)

The last task involved differentiating by applying the chain rule.

Generally, one of two strategies was employed by students. The first form technique called
for a specific connection between application of natural logarithms and differentiation.
Only two groups displayed a coherent collection of the logarithmic rules and differentia-
tion. Those groups were operating in the Trans- stage since they reflected on the explicit
structure of the chain rule and were also able to operate on the mental constructions
which made up their collection. Those students presented responses showing internal pro-
cesses for manipulating logarithmic objects. Their schema enabled them to understand,
organize, deal with and make sense out of application of the product rule, quotient, log-
arithmic rules and the chain rule. The other three groups could not apply logarithmic
rules correctly and as such could not process the differentiation of the given task. This is
illustrated in 4 where students resolved the surd form of the function correctly and took
natural logarithms both sides of the equation. The interpretation of logarithms was then
incorrect since a bracket was left out in step three of the response. Thus the function
differentiated was not the originally given one. Even in their process of differentiation
some brackets were still left out when they should have been there. Also the derivative
of the last term, —In(z? + 1) in step four was recorded as x++12 instead of x%HQ:U. In
the next step the subtraction sign has been left out and then restored back again in the
following one. The students in this group’s actions indicated that they knew which steps
to follow when differentiating. Their mental manipulations did not react to external cues
of basic algebraic manipulations and as such transformation was not complete and their
actions were not interiorized. Those students did not recognize the relationships between
application of natural logarithms and algebraic manipulations resulting in multiplications
when they were due and subtractions where appropriate. They perceived differentiation
as a separate entities and even the rules applied were not remembered correctly.
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Use logarithms to differentiate:

x(x +2)

4 (x +1)
5_[ ';+| )}

s 3‘” ')
37 \l ' -\ 2T )

el ' £ )
-‘5' T 3
Dot 2 .S
JS' A:)m:.—g—cﬂ'q;_ﬁ) 21| ol )
b
=
c:l% :'-:‘é—:—cg-—;;%;x) >t | &)
2L
szt 25 ?,Z(éfu
g.‘i:gtgg;ﬁ X

Extract 4: Incorrect application of chain rule in differentiation

The other group employed the straight form technique after converting the surd form to
its exponential form. However, they did not then utilize the product and quotient rules
appropriately. Their actions were not interiorized with regards to logarithms and this had
an impact on applying the chain rule in the given task. Their mental images could not
be related to the string of symbols forming the expression, since they could not interpret
both the symbols and or manipulations. Since calculations reflect the active part of mental
constructions, the rules for these students were not perceived as entities on which actions
could be made. Dubinsky (2010) asserts that in such cases the difficulty does not depend
on the nature of the formal expressions, but rather in the loss of the connections between

the expressions and the situation instructions.

5 Conclusion

The students’ responses discussed above indicate that the instructional pedagogy should
accommodate presentation of tasks that evoke rigorous deductive reasoning enabling the
students to write and reflect on how they construct various mental images. A wide range
of interactions between students themselves and between students and the researcher were
discussed.
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Most of the problems occurring in real life, when mathematically modelled, turn out
to be nonlinear differential equations. Since we are familiar with solving linear equations,
we linearize the equation and get a solution! Analytic solutions to nonlinear differential
equations are important since they give insight to the physical nature of the problem. In
this lecture, we shall discuss some of the analytic solution procedures for solving differential
equations. We concentrate on the following methods:

Taylor series method

(a
(

b) Picard’s method

)
)

(¢) Adomian Decomposition Method (Shooting Type)
)

(d) Laplace-Adomian Decomposition Method (Shooting Type)

There are some more methods which are available in the literature like Homotopy
analysis Method (Introduced by Liao S. J. in 1992), Homotopy Perturbation Method
(introduced by J.H. He in 1998) and Variational Iteration Method (introduced by J.H. He
in 1999).

Taylor series method

Given the first order differential equation vy’ = f(z,y) with the initial condition y(zq) = yo
the method calculates the higher order derivative from the differential equation and they
are evaluated at the point x(y using the initial condition and plugged in into the Taylor
series of expansion of y about the point .
Let us consider the problem
dy

A P 0) = —1.
iz x—y, y(0)

The exact solution is
y(r) = -3¢ —2x+2
We will develop a relationship between y and x by expanding y about x using Taylor series
and finding the coeflicients.
2

y(z) = y(zo) +y'(z0)(z — z0) + y”(ﬂco)%(ﬂc —x0) +y" (z0)(z — xo)gé 4.
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Let x — xg = h. Then

2
y(z) = y(xo) + y'(xo)h + y"(xo)%(h) + y/”(xo)(h)?’% 4.

The first term in the R.H.S of this equation is known from the initial condition

y(zo) = y(0) = —1.

The second, third, fourth terms are obtained by successive differentiation of our equation:

y'(r0) =y'(0) = —2x0—(-1)=1
Yy (z0) = =2 — 4/ (o)

y" (o) =y"(0)=—-2-1=-3
y///(xo) — _y//(x )

y"(z0) =y"(0) = —(=3) =3

Now we write our series solution for y as

(8) = 3(0) +y Oh + L p2 4 (o)

= —1+1.0h — 1.5h% + 0.5h> — 0.125h* + error

The main disadvantage of Taylor-series method it becomes awkward if the
derivates become complicated.

Picard’s method

Given the first order differential equation y' = f(z,y) with the initial condition y(zo) = yo
the method calculates the successive approximations y, of the solution as follows:

ynl®) = o + / C (g (1)) dt

with yo(z) = yo.

Consider the problem 3’ = 32, y(0) = 1.
Here 29 = 0, yo = 1 and f(x,y) = y?. Hence the initial approximation to the solution is
yo(z) = 1. The successive approximations are calculated using the Picard’s machine

yn(x) = Yo +/ f(taynfl(t)) dt, n > 0.
To
A simple calculation yields,

yi(z) =1+ =,
2 z?
) =1+z+uz +3
224 1 28 27
-1 2 3, «r L5 I T
y3(x) +zrz+4+z°+2x +34+3x+9+63

and one can easily see that the above sequence converges to 1 +x + 22+ - + 2" +--- .
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Adomian’s decomposition method

This method consists of

(e)

Splitting the given operator equation into linear and nonlinear parts;
Operating by the inverse of the linear operator on both sides;

Decomposing the unknown function into a sum, whose components are to be deter-
mined;

Identifying the terms arising out of source terms and initial and/or boundary con-

ditions as the initial term of the sum and

Obtaining the successive terms of the sum in terms of the initial term using Adomian
polynomials.

Consider the same problem discussed above. The nonlinear term f(y) = %? can be de-

composed into Adomian polynomials given by

Ao = y3, A1 = 2yoy1,
Ay = 2ygy2 + 43, A3 = 2yoy3 + 3y1y2, . - -

The successive terms of the solution are obtained as

yo =1, y1 ==

2
Y2 =177, Ys =T ...

and the solution is obtained as

y=l4+z+2>+ - +a"+ -

Laplace-Adomian Decomposition Method

The Shooting type Laplace-Adomian Decomposition Algorithm consists of

(a)

Converting the given integro-differential equation into an ordinary differential equa-
tion and applying Laplace Transforms or we can take Laplace transform directly to
differential equation or integral equation;

If the initial conditions are not given, we take the conditions as parameters and

convert the nonlinear term in terms of Adomian polynomials;

Equating like powers and applying inverse Laplace transform to obtain successive
approximations and

Summing up the approximations to get the closed form solution.
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Numerical Experiments

Problem 1. Consider the differential equation

d?u

ik

with boundary conditions u(0) =1, «/(1) =0, 0 <z < 1.
Taking Laplace transform and simplifying, we get

L(u(e)) = 5 + o + = L),

3

The nonlinear term f(u) = u® can be decomposed into Adomian polynomials given by

2 2 2 2
Ag = ug, Ay = 3uguy, Az = 3ugus + 3uouy, Az = 3ugus + 6uguius + u‘i’, ..

(@) = 5 + 5
L (2)) = = L(40)
L(ws(2)) = 5 L(A)

L(us(2)) = 5—L(A2)
By taking the Laplace inverse, we obtain
ug(z) = asinhx + cosh x

The next approximations are obtained as

e 3, 1 3 3 1 3 2
- 13 —e®(a+ 1)+ — (12az — 12a3z — 3a2 — 1) cosh
up () 1 (a—1) + e (a+1) +32( ax a’r — 3a ) cosh z
3 ) ) .
+ 32 (43: —4a“x + 3a° — 7a) sinh z

and so on. Defining the sum up to the n—1 terms as S, (x) and using the second condition
v (1) = 0, we get approximations to «'(0) = a, which in turn should be substituted in
Sp(x) to get the approximate analytic solution. The values of successive approximations
to u/(0) are obtained as shown in the table.

anp,
—0.761594156
—1.021864369
—1.054972945
—1.064092629

Alw || S

The bounds obtained by Arthurs and Arthurs are —1.049 and —1.077.
The next table presents the results obtained from Laplace-Adomian’s method and
Shooting type Adomian’s decomposition method.
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x STLADA Ss STLADA S, STADM Sg STADM S~
0.0 1.00000000 1.00000000 1.00000000 1.00000000
0.2 0.82421498 0.82235015 0.82374727 0.82242841
0.4 0.70465913 0.70076649 0.70371973 0.70092610
0.6 0.62739970 0.62143415 0.62613357 0.62161233
0.8 0.58433808 0.57667882 0.58301196 0.57661480
1.0 0.57067025 0.56230240 0.56938739 0.56183884

Problem 2. Now consider the differential equation 3273 = e" with boundary conditions
u(0) =0, u(1l)=0, 0 <z < 1.
The nonlinear term f(u) = e can be decomposed into Adomian polynomials given by

1 1
Ag =" A; = e"™uq, Ay = e"uy + §u%e“°, Az =e" [ ug + éu‘rf +uqus |, ...

L{uo(r)) = -
L(w(2)) = 5 L(A0)
L(us()) = 5 L(AY)
L)) = 5 L(42)
up(z) = ax
e =
ug(x) = ﬁ (% — 4 (ax —1)e™ —5) — %

Defining the sum up to the n —1 terms as S, (x) and using the second condition u (1) = 0,
we get approximations to u/(0) = a, which in turn should be substituted in S, (z) to get
the approximate analytic solution. The values of successive approximations to u'(0) are
obtained as shown in the table.

Qn
—0.4347754841
—0.4604486353
—0.4632279437
—0.4635776752

Slwinl—] 3

The next table presents the comparison with shooting type Adomian’s decomposition
method and the shooting type Laplace-Adomian’s decomposition algorithm.
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x STLADA Sy STADM S5 Exact Error
0.0 0.00000000 0.00000000 0.0000000 0.00000000
0.1 —0.04143043 —0.04142968 —0.041436 1.3442417x10~4
0.2 —0.07325653 —0.07325643 —0.073268 1.5654856x 104
0.3 —0.09578451 —0.09578178 —0.095800 1.617223x1074
0.4 —0.10921515 —0.10921339 —0.109240 2.2746246x 1074
0.5 —011367514 —0.11367290 —0.113700 2.1867194x 1074

This problem has the unique explicit solution

o = st fose o (23]}

where c is the root of the v/2 = ¢ sec(§) lying between 0 and 7§, namely ¢ = 1.3360557.

Problem 3. Next consider the differential equation 32712’5 =—-1-a? (%)2 with the bound-
ary conditions u(0) =0, u(1) =0, 0 <z < 1.
The nonlinear term f(u) = (¢/(z))? can be decomposed into Adomian polynomials given
by

Ao = (up)®, A1 = 2uful, Ay = (u))? + 2uful, As = 2uul + 2uju, ...

b
L{u(z)) = 5 -3
o2
L(u1(z)) = ——L(Ao)
o2
Liun(x)) = -5 L(41)
o2
L(us(z)) = =5 L(Az)
2
uo(x) = bxr — %
Lo 1 o4 1999
up(x) = 3ba e Pl 2b a‘x
2,45 Lioga 13,3 1 456
ug(x)—15bax 3bax +3bax e

Defining the sum up to the n — 1 terms as S,,(x) and using the second condition u (1) = 0,
we get approximations to u/(0) = a, which in turn should be substituted in S, (z) to get
the approximate analytic solution. The values of successive approximations to u’(0) are
obtained as shown in the table.

bn
0.5000000000
0.5223657595
0.5213279281
0.5214794109
0.5214679845

g |w|N|~|3
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The next table presents the comparison with shooting type Adomian’s decomposition

method and the shooting type Laplace-Adomian’s decomposition algorithm.

T STLADA Sy STADM S5 Exact Error

0.0 0.00000000 0.00000000 0.00000000 0.00000000
0.1 0.04657083 0.04657084 0.04657094 2.36198 x 1076
0.2 0.08230374 0.08230375 0.08230398 2.87956 x 1076
0.3 0.10757266 0.10757269 0.10757301 3.25360 x 1076
0.4 0.12263418 0.12263419 0.12263459 3.34326 x 1076
0.5 0.12763825 0.12763827 0.12763868 3.36888 x 1076

This problem has the unique explicit solution

) = o tog | =L

with a? = 0.49.

Conclusion

A comparison of Taylor series method, Picard’s method, Shooting type Adomian’s de-

composition method and Shooting type Laplace-Adomian’s algorithm has been done. We

find that the last two methods provide better results comparison to the first two methods.

From the tables we can observe the error is very small in all the cases.
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Abstract : A problem-solving perspective for using mathematics can be estab-
lished in school children by laying down roots through classroom activity. The phrase
'problem-solving’ has multiple meanings, and I am going to focus on bringing a cre-
ative mindset and existing knowledge to bear on non-routine problems. In this talk I
will illustrate how this might take place at three different stages of school mathemat-
ics: elementary, middle and secondary. I shall also show how this approach can be a
basic method for meeting new mathematical ideas.

1 Introduction

The phrase ’problem-solving’ has many different meanings in mathematics education.
Most curricula internationally now contain some kind of commitment to problem-solving
as a curriculum aim and some curricula are more explicit than others about what is meant.
In this paper I examine various kinds of problem-solving in mathematics and identify the
demands they make on the learner, and hence of pedagogy. Each different type requires
different kinds of attention in tasks and lessons, because problem-solving skills vary be-
tween problem types. A general problem-solving mindset is not necessarily enough, on its
own, to bring about successful mathematical learning through problem solving.

2 Background

My own teaching experience has been in government schools for 11 to 18-year-olds. From
this experience I claim that it is possible for most students to experience key ideas in the
curriculum through working on extended problem situations, often in collaboration with
others.

My experience as a teacher is therefore similar to that described by Boaler (1997) in
her comparison of the work of similar students from different schools. In one school, like
mine, a problem solving curriculum was used and in another a procedural, step-by-step,
way of teaching was pursued. The students in the first school did significantly better
than students in the second school in the same examinations both on procedural questions
and also on deeper questions. One feature of their success was that if they did not know
about the content in a particular question they would use problem-solving strategies to
move towards an answer; students in the second school would leave the question out if
they did not know how to do it. This study has been used to support arguments for
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a problem-solving approach to teaching and collaborative classroom practice as ways to
improve students’ achievement, understanding, and interest in mathematics. Similarly,
the introduction of a 'reform’ curriculum in the United States has prompted many other
countries to promote changes towards problem-solving in mathematics. The international
PISA tests have also promoted this shift, and the underlying argument is that the economic
and technological demands of the 21st-century require students who are skilled in flexible,
multistage application of mathematical ideas to nonroutine situations.

The simplistic argument is: if this is what governments want in their workforce, then
this is what students must learn at school. I shall lay out the complexities behind this
argument. The research on which I base this paper is mainly classic. Recent research in
the area has not, in my view, produced substantial new insights but may have recast them
in a socio-cultural discourse. Recent work also gives clear accounts of classroom practice.
As an alternative, I am going to focus on the mental activity involved in solving problems.

3 Problematising problem solving

There are three significant questions that need to be addressed during the international
rush towards 'problem-solving curricula’ in mathematics.

(a) What is meant by 'problem-solving’?
(b) What is learnt through ’problem-solving’?

(c) What are the implications for pedagogy?

There are other significant questions that also arise , such as how problem-solving can be
assessed and what forms of knowledge mathematics teachers need, but these are outside
the scope of this paper.

4 The meaning of ’problem-solving’

Interest in problem-solving in mathematics as a research domain arose initially in the
context of older students’ capabilities when presented with questions that required the
application of conceptual understanding, rather than the direct and obvious application
of learnt techniques. For example, the student might be able to perform solutions of
simultaneous equations, where these are like the ones they have practised, but might not
be able to begin thinking about this question:

Consider the set of equations

aa:—|—y:a2

rz+ay=1

for what values of a does this system fail to have solutions, and for
what values of a are there infinitely many solutions ?
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This question was posed in Schoenfeld’s classic study of the use of problem-solving strate-
gies (1982). His research focused on whether a few undergraduate students could be taught
to use problem-solving strategies and hence become better at solving the kind of prob-
lems that probe conceptual understanding. In an age of digital mathematical tools, the
processes of solving simultaneous equations can be done in nano-seconds, but the solution
of problems such as this take some conceptual understanding to tackle, even if the ma-
nipulating work is done using a computer algebra system. The relationship between the
problem and the student’s conceptual understanding is dialogic. Whereas some conceptual
understanding is needed to get started, it is likely that the student’s knowledge is enriched
through working on this problem. For example, the student might not previously have con-
sidered that the parameters of a system of equations can have their own internal relations.
The problem therefore scaffolds an understanding of simultaneous equations that has a
higher level of generality than can be achieved by practising techniques in routine exam-
ples. An example with younger children of this need for conceptual understanding when
applying learnt procedures might be "Two mystery numbers on a numberline are three
units apart. What could they be?” This question approaches subtraction as ’difference’
from an unexpected angle if children have only done given subtractions before.

In school mathematics, the problems presented after practising techniques tend to be
word versions of the same technique. This kind of problem-solving has been around in
textbooks and teaching for several hundred years and usually the student is expected to
apply the technique just practised. This requires them to spot the underlying structure
in the word problem and relate it to the technique. Some approaches focus on telling
students how to match particular words to particular operations, such as how many?’ as
a cue to multiply. This misses the point and can lead to error. When this is the only kind
of problem-solving that is required by curriculum, students depend on knowing what to
do to solve the problem: there is a clear method and a clear answer, and teachers can feel
secure in maintaining progress through typical curriculum topics. As Hiebert et al. say:
“Rather than mastering skills and applying them, students should be engaged in resolving
problems. ... the history of problem solving in the curriculum has been infused with a
distinction between acquiring knowledge and applying it.“ (1996, p.18)

A more challenging development of this kind of problem-solving is the presentation of
collections of word problems for which the ’routine’ is not obvious and students have to
decide which operations to apply. For young children, we could pose the problem: 'Molly
has five more sweets than Jack, who has one less than Mandeep. How can they share their
sweets out equally?’ For older students: 'Use compasses and a straight edge to construct a
quadrilateral with one right angle between two adjacent equal sides, two opposite parallel
sides, and a diagonal whose length is 8 cm. How many possibilities are there?” In each
of these the student has to work with the meaning of the relations between the elements
presented in the problem: manipulate them; try out different combinations, and in the
process become familiar with the relations and properties of the situation. Only then can
they apply learnt techniques successfully.

Another kind of problem-solving is to approach new ideas in mathematics through
problematising existing knowledge. Similar to the historical genetic development of math-
ematics, a learner encounters new ideas as they arise through questioning older ideas. This
is an ideal pathway for developing young mathematicians who can then tackle Olympiad
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problems. When this is the predominant kind of problem-solving, students can develop a
coherent view across mathematics and a questioning stance towards mathematics. New
mathematical developments are seen as implications of earlier mathematical ideas. How-
ever, curriculum coverage of particular topics is limited because of the time taken to
access each new idea. For example, a classic difficulty in solving linear equations is the
development of students’ understanding of which moves to make and when. One common
approach is to introduce a balance beam model as a metaphor for equality between both
sides of the equation. This works well for addition and positive numbers. One teacher 1
observed using this approach presented its use when negatives are involved as a problem
for the class to solve. It took them two lessons to move from the concrete model to the ab-
stract idea of ’doing the same things both sides’ which enabled them to handle negatives.
It can be argued that the teacher could have led them there, through exposition, fairly
quickly and the two lessons could have been spent becoming fluent in using the method.
The students who spent two lessons devising this 'rule’ for themselves had also developed
a strong understanding of what an equation is, rather than merely learning a method. The
difference between this kind of problem-solving and the simultaneous equations example
above is that the knowledge developed about handling negatives in linear equations is an
essential component of future learning, whereas the outcome of the parameter problem
has no specific value, but the experience of working with relations between parameters
has a more general value.

The final kind of problem-solving I consider here is the solution of problems in context.
In this approach the problems might be real, such as to plan a holiday, or to optimise
profits in some economic endeavour, or the problems might be 'realistic’ in the sense that
they relate to situations that are easily imagined. The acknowledged experts in this field
are the Freudenthal Institute with their well-theorised approach of Realistic Mathematics
Education (e.g. Gravemeijer and Doorman, 1999).

There is therefore a collection of meanings for the phrase 'problem-solving’: the routine
and nonroutine application of techniques; working on mathematical questions that lead
to new curriculum topics; working on mathematical questions that develop pervading
mathematical modes of enquiry; and applying mathematics to problems in contexts.

5 Pedagogic issues associated with problem-solving

The ability to solve problems is often stated as a curriculum aim without any differen-
tiation between these types of problem-solving. However, the ability to apply a recently
learnt technique to a worded problem is very different from the ability to approach an
incompletely-defined realistic problem, such as those found in the workplace, or an unfa-
miliar mathematical problem. I am going to argue that different kinds of mathematical
problem-solving capability require different pedagogical approaches.

A further source of confusion in mathematics education literature is whether research
into students’ problem-solving is focusing on their development of problem-solving ca-
pabilities, their adoption of problem-solving heuristics in particular, or the more general
learning of mathematics, including meeting new ideas and becoming fluent with techniques.
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6 Routine and non-routine application of techniques in word
problems

A plethora of research has been undertaken to understand young children’s approach
to word problems. Verschaffel, De Corte and Lasure (1994) point to a reluctance to
use everyday knowledge in such problems, and Hegarty, Mayer and Monk (1995) find a
difference between those who use the size of numbers or particular words as cues to decide
what to do, and those who construct mental models to help them solve the problem, the
latter group being more successful. From a student’s perspective, it is not obvious why
they should bother to construct a mental model if all they are being asked to do is repeat
a recently-learnt method in a worded context. The actual words may not matter as much
as the grammar if the child is thinking 'I have been doing subtraction all week so these
problems are about subtraction’. There is no reason why doing routine word problems
should prepare students for doing non-routine problems because in the latter they have
to understand the relations between components of the problem whereas in the former
they only have to act in a patterned ways (Brown and Kuchemann, 1976). Students
who are used to the classroom regime in which they are expected to calculate answers
quickly and accurately are often reluctant to slow down and reflect on the problem to
enable them to choose appropriate techniques to apply. Kahnemann (e.g. Kahnemann
and Frederick, 2002) explained this tendency by claiming that the mind operates in two
simultaneous systems: one system S1 reacts quickly, intuitively, automatically based on
past experience, and the other system S2 reacts more slowly, reflectively, and critically. In
mathematics we need both systems, and we also need to have control over which system we
use and when, so that when we are starting a problem we need to be using the S2 system
and deciding, based on the nature of the task, when to use fluent S1 procedures and when
to take deliberate S2 decisions. While this theory explains the findings of Hegarty et al.
(1995) it does not give pedagogic advice. For most of the school mathematics taught to
younger children, the idea of visualising the situation described in the word problem is an
obvious and powerful tool for problem-solving. Explicit attention paid to this in class - not
leaving it to chance - can make a difference. This is an example where a specific problem-
solving strategy can be taught, adopted as a common practice, and becomes useful. There
is the missing link however, which is that children have to understand what actions are
expressed by addition, subtraction, multiplication and division. If their understanding of
addition is limited to enumerating the outcome of combining two sets, and the problem
is about increasing a number, they may not recognise that addition is the appropriate
operation even if they have an image of the context. This problem is especially important
when children are offered nonroutine problems and given no clues about the associated
arithmetic. The pedagogic task is therefore not only to give explicit attention to image
building, but also to ensure students have multiple ways to understand the underlying
concepts.

In the middle school years the mathematics curriculum generally moves in directions
that cannot be visualised so helpfully. For example, it is difficult to observe the geometric
fact that, from an external point to a circle, the square of the length of the tangent is equal
to the product of lengths from the point to the circle along the secant. It is also difficult to
imagine the value of the rate of change of an exponential function. The main arithmetical
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idea in these years is that of proportion and, while visualisation can give students a good
idea of what proportionality means, the relationships between different quantities involved
are quite hard to perceive. It is very difficult to connect different sizes of the same shape as
instantiating a constant ratio in a diagram or situation. From problem-solving perspective
the requirement to understand the problem and also to understand the purpose of different
operations is the same as that for younger children, but the strategy of ’'visualising the
situation’ is less likely to give a direct method of solution.

7 Working on mathematical questions that lead to new cur-
riculum topics

Here are three questions that can, in an enquiring community, lead students to appreciate
some new-for-them ideas in mathematics:

e [ am thinking of two numbers and when I add them together I get 14. What could
the numbers be?

e The difference between consecutive terms in a linear sequence is constant. Suppose
we have a sequence in which the difference between consecutive terms is itself a linear
sequence; what could that sequence be?

e Could we express the size of an angle at a given point in terms of the length of the arc
of a unit circle that it supports? Express some common angles and the trigonometric
ratios in terms of this new measuring unit.

The assumption behind these questions is that students are willing and permitted to
explore, perhaps messily, and thus develop a coherent set of connections between mathe-
matical ideas, grounded in their existing knowledge and understanding. However, experi-
encing a key idea in one context does not necessarily build up a repertoire of mathematical
knowledge and skills that can be applied in more complex problems. It does, however,
contribute to the development of a problem-solving mindset. It is of central importance
here that the teacher, who has scaffolded higher levels of mathematical thinking by pos-
ing the questions, also intervenes to ensure that the new mathematics students encounter
becomes part of their repertoire in a generalised form. This can happen through careful
repeated use of language, through provision of symbolic representations, and through be-
ing given further problems in the same structure. Descriptions of pedagogy that supports
this enquiring, problem-solving, mindset often base their claims of success on students’
capabilities in solving particular problems, or in taking a problem-solving approach to
unfamiliar situations. More rarely do we read of how teachers working in these ways help
students to develop a repertoire of technical mathematical methods and a robust mental
bank of mathematical concepts.

In the first problem above, students who are easily satisfied with one quick answer
will not necessarily grasp the multiple perspectives on the additive relationship that could
arise from a deep enquiry of such problems in general. In the second problem it could also
be possible to stop at one answer, such as a sequence of square numbers, without teacher
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intervention to encourage seeking more examples and to pose further questions that ex-
tend and generalise the idea. The third problem is perhaps a more obvious introduction
to a new idea. The point to be made here is that solving any problem can be an isolated
experience which has no effect on either mathematical knowledge, or on the development
of mathematical problem solving skills, unless it is part of a planned pedagogical develop-
ment. In these three cases the curriculum value of the examples I have given is obvious in
terms of conceptual knowledge.

8 Working on mathematical questions that develop mathe-
matical modes of enquiry

I have chosen to use the phrase 'mathematical modes of enquiry’ to avoid generalised
‘problem-solving skills’. Mathematical modes of enquiry include general problem-solving
skills, but also include posing questions, following ’what if..?” lines of reasoning, and
exploring classes of mathematical objects beyond those that were necessary for solution of
the problem (Watson and Mason 1998). In other words, students need to develop curiosity
about mathematical situations, seeing ’outside’ phenomena in terms of mathematics, and
being inventive about selecting, creating and applying mathematical tools for solutions.

I have not mentioned so far the notion of ’open-ended’ problems versus closed problems.
This is deliberate. A closed problem with one answer, achieved one way, requires, as I
have said before, transfer of a known method into a situation that the student recognises
as a manifestation of a mathematical relationship. Any problem can be opened up using
curious questioning. Any problem can be treated as an open question by someone who does
not spot a closed pathway through it. Students who have developed curiosity, and have
experience of trying out different directions of exploration, such as by trying special cases,
calculating two ways, drawing rough diagrams, breaking down a problem into subgoals,
and so on, can tackle more questions than those who rely only on taught methods. As
with other aspects of problem-solving, these mathematical habits cannot be an add-on
to a more procedural approach - they have to imbue the whole mathematical experience.
In addition, teachers could set problems for which their main goal is to help develop
self-questioning skills, but if these are always as ’add-on’ to formal teaching students are
unlikely to develop a problem-solving approach to benefit their learning across the whole
of mathematics.

9 Applying mathematics to problems in contexts

So far I have drawn on experience to explain the phenomenon illustrated in Boaler’s work,
and in other places (e.g. Watson and De Geest 2005; Senk and Thompson, 2003) that
students who learn mathematics through complex extended tasks appear to be able to
do procedural work similarly to those taught procedurally, but have the additional ability
to tackle nonroutine and unfamiliar mathematical situations, and apply mathematics to
other spheres of activity.

Another approach to problem-solving in mathematics is that of the Freudenthal In-
stitute, who have an extended experience of teaching mathematics through immersing
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students in realistic contextual problem solving (e.g. Gravemeijer and Doorman 1999).
The word ’realistic’ here does not mean ’actual’. Instead it means that students are able
to imagine the situation and deduce relations among the quantities involved on the basis
their physical experiences. Thus, for example, they might be able to imagine a world in
which giants are 2.5 times the height of humans, or a machine in which a fluid flows up
hill at a particular rate - it does not have to be possible in the material world.

A simplistic version of real-world problem solving in mathematics do would be to
assume that somehow, by solving real-life problems, students can learn mathematics. Stu-
dents who work frequently on this kind of problem can become adept at developing ad hoc
solution methods that are specific to the problem itself, for example trial and adjustment
methods, measurement methods, numerical approximation methods and so on. Once the
problem is solved there may not be any perceived need, by the student or teacher, for a
universal method or an abstract idea that a mathematician could see behind the design
of the problem. The Realistic Mathematics Education approach structures the problems
so that a need for more powerful universal methods arises through a process of ’vertical
mathematisation’ (Treffers, 1987). Students work on a range of problems that are math-
ematically similar so that similar solution methods are repeated. A need to encapsulate
theses repeated methods as formal mathematical ideas emerges and is orchestrated by the
teacher and the published materials. For example, problems that involve proportional
reasoning give rise to a notation (a ratio table) that makes sense as a way to store data
from the problem. The internal structures of the table can then be used as a problem-
solving tool in other problems. For example, the table below can be understood through
multiplicative relationships from left to right, or between top row and bottom row, or

between any two non-adjacent columns, or as expressions of equivalent fractions or ratios.

3169 |12
5110 | 15| 20

The use of ratio tables leads me to a conjecture: that a knowledgeable teacher, or a
well-designed textbook, can provide ways to format students’ efforts to solve problems so
that the underlying formal mathematics becomes more obvious through the layout. The
traditional long division algorithm is an example of this idea. The algorithm provides a way
of organising a method of division that depends on repeated subtraction from a number
which is treated according to the place value of its digits. A procedural approach would
focus only on the format - the long division method. A problem-solving approach would
generate ad hoc methods of division which could then be formatted into the long division
algorithm. Something similar happens in early calculus. A procedural approach would
focus on using formulae to differentiate polynomials. A problem-solving approach would
involve exploring, possibly using a digital graph-plotter, the gradients of a function for
different x-values and these findings could be formatted to indicate the underlying gradient
function. I am not suggesting that all mathematics can or should be learnt empirically,
but that a problem-solving curriculum generates empirical evidence and experience which,
if it is left at that point, might not contribute to the creation of a mathematical repertoire
which would then be available for further use both in mathematics and outside.
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10 Problem solving heuristics

The title of this paper focuses on preparing students to be mathematical problem-solvers.
One possible approach would be to teach methods of solving problems.
In his classic work "how to solve it’ Polya (1973) gave a general heuristic for mathe-

matical problem-solving:

e understand the problem
e make a plan
e carry out the plan

e look back

Indeed, this is a general heuristic for any kind of problem-solving. On its own, however,
it provides very little advice other than as a framework for keeping track of where you
are while solving the problem. He then offered six ways of understanding a mathematical
problem, and many of these are mathematically-specific:

e What are you asked to find or show?

Restate the problem in your own words

e Draw a picture or a diagram

Is there enough information?
e Do you understand all the words used in stating the problem?

e Pose a question
and 15 possible contributions to making a plan:

e Guess and check

e Make a list

e Eliminate possibilities
o Use symmetry

e Consider special cases
e Use direct reasoning
e Solve an equation

e Look for a pattern

e Draw a picture

e Solve a simpler problem
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Use a model

Work backward

Use a formula

Be creative

e Use your head

It is clear that some of these suggestions are easier to follow than others. For example,
if you cannot see how to apply ’direct reasoning’ an instruction to do so is of little use.
Similarly, if nothing helpful comes to mind, the instruction to "use your head ’ is pointless.
It would also be ridiculous to expect students to learn all these suggestions and to try
them all when they are stuck with a problem. Polya’s work prompted a research debate
about the value of teaching specific problem-solving heuristics. Key research in this area
is Schoenfeld (e.g. 1979, 1982) and it is worth returning to the debates of the 1980s to
think about the desirability of a problem-solving curriculum.

On the one hand, Schoenfeld was getting mixed results when teaching particular
problem-solving strategies to small groups of advanced students, and claimed that: ’
when problem-solving strategies are identified and taught, and when students think to
use them, the impact on the students problem-solving performance is substantial’ (1979,
p.185). He hedged this with the observation that even in his closely focused experimental
environment, students did not readily use the problem-solving heuristics they had learnt
in a post test problem. The key phrase here is 'when students think to use them’ which he
could ensure within the study itself by limiting the number of heuristics available and en-
suring they were relevant for the problems. His concern was that students did not transfer
their use to other problem-solving situations. He points out that ’[r]eal-life mathematical
problem-solving experiences are not nearly as well ordered as they were in this experiment,
the likelihood of students picking up the strategies from their experience is small... p.184".
Nevertheless, his work is sometimes taken to be a recommendation for explicitness about
mathematical problem-solving heuristics.

Schoenfeld selected the problem-solving strategies that he would teach students and
the problems that he would pose, so that he was in control of a limited supply of plausible
problem-solving tools. Sweller (1990) critiques this work by pointing out that : 'work
on expert-novice differences led directly to the hypothesis that expertise consisted of the
accumulation of a large store of domain-specific knowledge and strategies (that is why it
takes so long to become an expert) and that there were few differences between experts and
novices in general strategies.” In other words, Schoenfeld had inserted his own expertise
into the study through his choice of problems and strategies, and Polya’s framework can
easily be adopted by students, but not necessarily with any improvements in mathematical
problem-solving capabilities. The problem with problem-solving was posed as a problem
of students transferring learnt heuristics between problems.

The pointlessness of following problem-solving heuristics in an uncritical way can be
illustrated using an example from Mason, Burton and Stacey (1982). In the book , Mason
at al. offer four mathematical actions to apply to problems: specialise, generalise, conjec-

ture, convince. Consider this problem from the book:
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Productive exchange

27T x 18 =28 x 17 =10
37 x 18 =38 x 17 =20

Generalise

Thoughtless application of the actions would be impossible, since we are offered two
specialisations of something and asked to generalise - that is the first two actions. Students
who have previously succeeded in mathematics by doing exactly as they been asked to
do, complying with instructions and applying procedures, would be lost. One problem
for an obedient student is 'what does the author expect me to generalise?’ or even 'what
does the author expect me to notice?’ and instead of genuine mathematical enquiry the
problem can become one of trying to guess hidden meanings.

What does an experienced problem solver do? I do not recognise any patterns here
immediately, so I search for them in the relationships between the particular numbers
chosen, while bearing in mind that any relationships I find might not be specific to 7s and
8s. In searching for patterns I am looking at the structure and the relationships expressed
in the examples. I am initially torn between re-expressing the numbers in place value (e.g.
28 = 20+8) and expressing some relationships algebraically (e.g. nm—(n+1)(m—1)). The
algebraic approach attempt loses some of the specific place value features of the problem
statement, so I might start with an obvious conjecture about 47 x 18 — 48 x 17, and so on
.... Most of these initial steps are specific to this problem, but could be generalised as, for
example, choice of representation. How the problem solver decides what representation
to choose depends on past experience of using that representation and past experience of
solving similar problems. There is no algorithm for making the choice.

As I have just shown, my own experience of working on mathematical problems would
certainly support the view that a good problem solver needs a store of knowledge and
strategies, and experience in using these, and a combination of the two that generates
awareness of what might be appropriate. However, this does not provide an argument for
or against the teaching of problem-solving heuristics. Instead, it provides an argument for
students and teachers to imbue their work with a range of problems that require regular
application of knowledge and strategies and development of mathematical awareness. As
Schoenfeld indicated, a mental list of strategies is no use unless students think to use
them in appropriate circumstances. Mason (2000) argues strongly that what is needed is
the development of mathematical awareness that can intentionally be brought into action
when relevant. Naming appropriate actions is not to provide a list to be learnt and
applied, but to make fine distinctions between different actions and draw students into
a world of possibilities from which they can consciously or unconsciously choose. This
applies both to mathematically-posed problems and also to applications of mathematics
in outside contexts.

How does such awareness develop? I have indicated in this paper that problem-solving
needs to be an integral part of students’ classroom experience, and this would create a
mindset towards mathematics as a problem-solving endeavour. I have indicated also the
importance of the teacher who does not divert mathematical enterprise towards generic
problem-solving strategies, but provides the formats of mathematics to organise mathe-
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matical enquiry and mathematical development. To do this well, the teacher also has to
have a problem-solving mindset towards mathematics, and therefore needs to have also
engaged with the same range of problems, within and outside of mathematics.

The socio-cultural approach to mathematics education draws our attention to the
importance of establishing cultural norms in learning. It is not enough to rely on individual
creativity in problem-solving; it also has to be the living reality of mathematics classrooms
so that students know that their attempts to solve problems are expected to be messy,
inconclusive, incomplete and exploratory. In return, the teacher needs to value their
attempts and provide the shaping, the formatting, that brings them to completion in
standard mathematical forms.
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Abstract : Learning to apply Mathematics is very different from learning Mathemat-
ics. As 7pure” mathematics is usually perceived as a list of specific procedures, tech-
niques, theorems, and rules, ”applied” mathematics is used for solving a wide range of
problems, many of which do not seem mathematical in nature. The mathematical and
computational sciences continue to find many applications, both traditional and novel,
in industry. Some of these applications have very dramatic effects on the bottom line
of their companies, often in the tens of millions of dollars. Other applications may not
have an easily measured impact on the bottom line but simply allow the company to
conduct business in a 21st-century data-rich marketplace. Finally, some applications
have great value as contributions to science. In this paper, an attempt is made to
answer the question “What is mathematics used for, anyway?” . Some basic concepts
of mathematical modeling is introduced followed by case studies which bridges the
gap between abstract mathematical concepts known to mathematicians and engineers
who wish to solve real life problems in industries.

1 Introduction

Role of Mathematics in Industries

The Society for Industrial and Applied Mathematics (STAM) with support from the Na-
tional Science Foundation and the National Security Agency conducted a survey for finding
out applications of advanced mathematics in Industries and also employment scenario for
a significant community of highly trained mathematical scientists[1]. Approximately 500
mathematicians, scientists, engineers, and managers in the United States participated in
the survey over a period of three years. The survey was conducted by telephone interviews
with 203 recent advanced-degree holders (master’s and Ph.D.) in mathematics working in
non-academic jobs, followed by telephone interviews with 75 of their managers and 19 in-
depth site visits by groups of steering committee members to industrial and governmental
organizations in United States. Table 1 shows the distribution of graduates surveyed in
five major sectors of industry, based on the Standard Industry Classification codes of the
United States Office of Management and Budget.
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Table 1 Distribution of mathematics graduates in five major sectors of

industry
Non-academic sector Ph.D. | Master’s
Government 28.00% 22%
Engineering research, computer services, software 19.00% 18%
Electronics, computers, aerospace, transportation equipment | 17.00% 12%
Services (financial, communications, transportation) 13.00% 22%
Chemical, pharmaceutical, petroleum-related 6.00% 2.00%

Mathematicians and their managers were asked in the telephone survey about the status
of advanced mathematics in their overall organizations, where ”advanced” means at the
level of the respondent’s highest degree. Those responses are summarized in Table 2 and
show the consistent importance of mathematics not only for its practitioners, but also for

their managers.

Table 2 Average perceived importance of mathematics in respondents’
overall organizations

Importance of advanced mathematics | Ph.D. | Master’s | Managers
Primary 43% 28% 51%
Secondary 43% 40% 37%
Only for general utility 11% 32% 12%

Nearly half (49) characterized mathematics as an underlying requirement or tool for their
group’s work. Three main functional roles for mathematics were mentioned by managers:
development of algorithms and numerical methods (27); modeling and simulation (23);
and statistical analysis (15). The site visits, telephone surveys, and experiences of steering
committee members in industry build a picture in which mathematics participates in many
ways in the overall enterprise of industrial and government organizations. Table 3 indicates
selected associations between areas of mathematics and applications encountered in the

site visits.

Table 3: Mathematical areas and industrial applications encountered during
site visits.

Mathematical Area Application
Algebra and number theory Cryptography
Computational fluid dynamics | Aircraft and automobile design
Differential equations Aerodynamics, porous media, finance
Discrete mathematics Communication and information security
Formal systems and logic Computer security, verification
Geometry Computer-aided engineering and design
Nonlinear control Operation of mechanical and electrical systems
Numerical analysis Essentially all applications
Optimization Asset allocation, shape and system design
Parallel algorithms Weather modeling and prediction, crash simulation
Statistics Design of experiments, analysis of large data sets
Stochastic processes Signal analysis
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Nearly every manager interviewed by telephone cited a particular combination of ap-
plication and mathematics in which mathematics had made a significant contribution.
However, the application problems, intended to show the relevance of mathematics, are
often concocted in nature confirming students beliefs that mathematics has no relevance

to real life.

2 Some Industries Where Mathematics is Applicable

Computer Industry: Software Design, Computer Programming

Software engineers/computer programmers design, write, test and implement software
packages for consumer use and other computer applications (for internal use) that help a

company perform a task or set of tasks more efficiently.

Cryptography and Security

A cryptographer/cryptanalyst analyzes and deciphers secret coding systems and decodes
messages for governmental or law enforcement agencies. They also provide privacy for
individuals and companies by keeping hackers out of important data systems. (www.
weusemath.org)

Pharmaceutical Industry, Biomedical Industry, Public Health

Bio mathematicians and biostatisticians design research studies to analyze data related to
human health, animals or plants (e.g. genetic data, disease occurrence data, and medical
imaging data.) Many use mathematical and statistical techniques to assess the efficacy of
drug treatments and others analyze data for populations exposed to toxic environmental
chemicals to understand their health risks and effects. (www.weusemath.org)

Investment and Finance

Financial analysts work for banks, insurance companies, securities firms, and other busi-
nesses, helping these companies or their clients make investment decisions. They assess the
performance of stocks, bonds, and other types of investments. (www.business.mtu.edu,

www.bls.gov)

Operations Research/Management Science

Operations research analysts are involved in strategizing, planning, and forecasting assign-
ments to help companies make better (profitable) decisions and to solve problems. They
help companies allocate resources, measure performance, design production facilities and
systems, manage the supply chain, set prices, coordinate transportation and distribution,
and analyze large databases. (www.weusemath.org, www.bls.gov)

Actuarial Science

n actuary deals with the financial impact of risk and uncertainty in the insurance industry.
Actuaries compile and analyze data to estimate the probability and likely cost of an event
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such as death, sickness, injury, disability, or loss of property. (www.weusemath.org)

3 Applied mathematics and mathematical modeling:

The mathematical concepts which are used to solve real world problems is generally re-
ferred to as Applied Mathematics. In this field, It is essential to be able to apply many
different mathematical techniques, be able to handle problems involving data where a
knowledge of statistics becomes important. It is also necessary to be able to take a prac-
tical problem, from engineering for example, and turn it into a mathematical problem.
The process of applying mathematics to a real life situation is often referred to as Math-
ematical Modeling. Mathematical Modeling is the process of creating a mathematical
representation of some physical phenomenon in order to gain a better understanding of
that phenomenon. Mathematical equations are based on fundamental laws of physics
(conservation principle, transport phenomena, thermodynamics and chemical reaction ki-

netics).

4 General Methodology of any mathematical modeling prob-
lem:

(a) Identify the laws governing the phenomenon
(b) Express these laws as mathematical Equations
(c) Solve these equations numerically
(d) Display the results graphically
(e) Analyze the results and make necessary interpretation
A schematic view of modeling process is represented in Figure 1.

Figure 1. Schematic Diagram of a Mathematical Model
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Mathematical modeling seeks to gain an understanding of science through the use of
mathematical models on HP computers. It is a teamwork which involves expertise from
the field of Mathematics, Science and Computer Science[2-3]. It is often used in place of
experiments when experiments are too large, too expensive, too dangerous, or too time
consuming. It can be useful in “what if” studies; e.g. to investigate the use of pathogens
(viruses, bacteria) to control an insect population and is a modern tool for scientific
1nvestigation.

All models contain the same basic elements: some motivating question or purpose,
simplifying assumptions that restrict the depth and breadth of the model, an organiza-
tional / logical structure, a series of mathematical expressions that followfromthose. Any
real world problem has to be first simplified into a conceptual model. In conceptual model,
the state variables are first identified. Then, the rates that causes thestatevariables toin-
creaseordecrease are identified. Finally the feedbacks between the state variables and rates
are defined.

5 Classification of mathematical Models:

Mathematical models may be classified according to their subject matter of the models
like mathematical models in Physics, mathematical models in Chemistry, mathematical
models in Biology etc. It can also be classified according to the mathematical techniques
used in solving them like mathematical modeling through classical algebra, mathematical
models through matrices, mathematical models through ordinary and partial differential
equations etc. Mathematical models may also be classified according to their nature like
linear or nonlinear, static or dynamic, deterministic or stochastic, discrete or continu-
ous. Mathematical modeling has emerged as a powerful, indispensable tool for studying a
variety of problems in scientific research, product and process development, and manufac-
turing. It is often used in place of experiments when experiments are too large,
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too expensive, too dangerous, or too time consuming, where it is extremely
difficult to collect data. It can be useful in “what if” studies; e.g. to investi-
gate the use of pathogens (viruses, bacteria) to control an insect population.
It has become a modern tool for scientific investigation. Some of the areas where
it is being used routinely are

(a) Seismology : oil exploration, earthquake prediction (Parallel computation reduced
compute time from weeks to hours)

(b) Climate modeling : global warming, weather prediction

(c) Economics: growth of a local or national economy (Agent-based modeling), man-
agement of resources, analysis of tax strategies

(d) Environment: utilization of resources, population modeling, insect control

(e) Material research: design of new materials, smart materials; shape driven by tem-
perature materials; materials aging issues (Stockpile stewardship)

(f) Drug design: design of anti-cancer drugs, etc.
(g) Manufacturing: optimization of manufacturing processes, automation
(h) Medicine: Medical imaging, MRIs

(i) Biology: Applications to understanding and treating disease, design of anti-cancer
drugs, etc.

6 Case Studies

6.1 Case study 1: Numerical simulation for aircraft aerodynamic design

The first case study is related to aircraft design using computational fluid dynamics tech-
niques. Computational Fluid Dynamics (CFD) [4-6] is the science of predicting fluid
flow, heat transfer, mass transfer, chemical reactions, and related phenomena by solv-
ing the mathematical equations which govern these processes using a numerical process
(that is, on a computer). The result of CFD analyses is relevant engineering data used
in: conceptual studies of new designs, detailed product development, troubleshooting and
redesign. The application of CFD today has revolutionized the process of aerodynamic
design. CFD has joined the wind tunnel and flight test as primary tools of the trade.
Each has its strengths and limitations because of the tremendous cost involved in flight
testing, modern air-craft development must focus instead on the use of CFD and the wind
tunnel. The wind tunnel has the advantage of dealing with a real fluid and can produce
global data over a far greater range of the flight envelope than can CFD. It is best suited
for validation and database building.

One major objective for the aircraft industry is the reduction of aircraft development
lead-time and the provision of robust solutions with highly improved quality. It will fi-
nally be essential to numerically flight-test a virtual aircraft with all its multi-disciplinary
interactions in a computer environment and to compile all of the data required for the
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development and certification with guaranteed accuracy in a reduced time frame. Aero-
dynamic Design deals with the development of outer shapes of an aircraft, optimizing for
its performance, handling qualities and loads. A major ingredient to the design process
is the numerical simulation of the external airflow. CFD has made important progress
in terms of accuracy of the physical models, robustness and efficiency of the nonlinear
solution algorithms and reliability of the overall prediction approach

Figure 2. Aircraft Design Process
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The conceptual design process considers what kind of technology will be employed or
which new methods will have a possibility to be utilised into the design before moving
to the preliminary design stage. A conceptual sketch can be useful to estimate aerody-
namics and weight fractions comparing previous designs. This sketch will illustrate the
approximate wing and tail geometries, the body shape, and cockpit, payload and passen-
ger compartment of the internal locations of the major components. In the initial sketch
design, the aircraft design work is done in full scale using CFD tools. Using the aircraft
design on CAD software, the layout is analysed and optimised, with consideration for
aerodynamics, structural analysis and the installed propulsion systems. After this perfor-
mance consideration, the performance capabilities are calculated and optimised compared
to the requirements. During the conceptual design and the preliminary design processes
the wing design will be finished and analysed as a whole. Therefore, in this phase the wing
design will be broken down into surface materials, flats and spoilers, individual ribs, spars,
each of which must be separately designed and analysed. Moreover, the production design
will determine how the aircraft will be made using the small and simple subassemblies and
building up to the final assembly process.

7 Computational process for CFD analysis

(a) 1st Step: Model is designed on CAD softwares, such as CATIA V5, SolidWorks 2002
and Pro/Engineer 2002.

(b) 2nd Step: The CAD Model is imported from CATIA V5 into Pre-processing software,
such as Gambit 2, HyperMesh and TGrid 3, to create meshing surface and meshed
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volume of boundary area.

(¢) 3rd Step: The Meshed Volume design is imported from the Pre-processing software
into FLUENT 6 to analyse aerodynamic performance of the configuration.

The flow chart for CFD analysis is shown in Figure 3.

Figure 3. Flow chart for CFD analysis
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7.1 Case study 2 Prototype-based Design

Goodyear®, the only major U.S. tire company, was founded in 1898 and is headquartered
in Akron, Ohio. Its primary products include theGoodyear®, Dunlop®, Kelly®, Fulda®,
and Sava®, brands. With revenues of 19.6 billion in 2007, the company has more than
60 manufacturing operations in 26 countries and 70,000 employees worldwide. Its two
majortechnical centres are located in Akron and Colmar-Berg, Luxembourg. Backin 1992,
failed takeover attempt had drained cash reserves of this company and under pressure to
reduce R and D expenditures, VP’s of Research and Product Development sponsored a
study of alternative product development methods. Three alternatives were identified:

e More efficient process of building and testing prototypes
e Extensive use of predictive testing
e Physics-based performance prediction

In 2003 and 2004, the Goodyear Tyre and Rubber Company found itself in a definite
slump, suffering declining revenues and losing out to its two main competitors, Michelin
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and Bridgestone. In response, Goodyear leveraged its high performance computer clus-
ters and its ongoing collaborative relationship with the Sandia National Laboratories to
change the way it developed tyres. Rather than designing, building and testing physical
prototypes, Goodyear engineers used modeling and simulation to test virtual models and
significantly cut time to market. The result was the Assurance® all-weather tyre featuring
TripleTred Technology® a huge hit that helped Goodyear not only climb out of the hole
it was in, but continue on to launch a flurry of new tyres that resulted in record profits.

8 Conclusions:

Computational scientists create mathematical models and simulations of physical, biolog-
ical and chemical phenomena and systems, which allow them to better understand these
subjects and predict their behavior. Such research has made computational science a
third pillar of science, along with theory and experimentation. The way to achieve more
computational scientists are, integration of science, technology, engineering, and mathe-
matics into a trans-disciplinary subject where the principles of science and the analysis of
mathematics are combined with the design process of technology and engineering. Also
introducing scientific computing, computational mathematics and CFD as part of curricu-
lum and introduce the concept of mathematical modeling by assigning projects from real
life situations will create computational scientists.
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Abstract : The theory of iterated function systems (IFS) and iterated multifunc-
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1 INTRODUCTION

Fixed point theorems are of prime importance in the theory of iterated function systems
(IFS). Michael Barnsley and Steven Demko [4] popularized the IFS theory after Hutchin-
son [10] gave a formal definition of it in 1981. It was born as an application of the theory
of discrete dynamical systems and has important applications in image compression, mod-
eling, computer graphics and various other areas of engineering and applied sciences. This
basic notion of IFS has been extended and enriched to more general settings by changing
the condition on mappings or the space by various authors, see for instance, [1], [3], [9],
[13], [15-19], [21-25] and several references thereof. In [1] and [9] contraction maps are
replaced by weakly contractive or non-expansive maps. Rus and Triff [27] replaced con-
traction constant by a comparison function to obtain their results. In [11] and [12] the
formulations of the contraction due to Meir and Keeler [14] have been used to generalize
the IFS theory. Mihail and Miculescu [15] introduced the notion of generalized iterated
function system (GIFS), which is a family of functions in a complete metric space and
showed GIFS to be a natural generalization of the notion of IFS (see [16-19]). Llorens-
Fuster et al [13] defined mixed iterated function system by taking more general conditions
and obtained a mixed iterated function system theory for contraction and Meir-Keeler
contraction maps. Our aim is to define generalized mixed iterated function system on
b-metric spaces and obtain some existence and uniqueness results. In this respect, our
results extend and improve some well known previous results given in [14], [16] and [20].
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2 PRELIMINARIES

Definition 2.1 ([8]). Let X be a non empty set and b > 1 be a given real number. A
function d : X x X — Ry is said to be a b-metric iff for all z,y,2z € X the following
conditions are satisfied

(i) d(z,y)=0if z =y
(i) d(z,y) = d(y, =)
(iii) d(z,z) < bld(x,y) + d(y, 2)]

The pair (X, d) is called a b-metric space.
It is well known that the class of b-metric spaces is effectively larger than that of metric
spaces, since a b-metric space is a metric space when b = 1 in the above condition (iii).

Definition 2.2 ([2]). Let (X,d) be a complete b-metric space. Then the Hausdorff dis-
tance between points A and B in K(X) , the collection of nonempty compact sub sets of
X , is defined by

h (A, B)= max{d(A, B), d(B, A)}, where d(A4, B) = max{min{d(z, y): y € B}: z € A}.

The Hausdorff space (K (X), h) is also called as a Fractal space (see Barnsley [2]).
It is known that (K (X),h

) is a complete b-metric space provided (X,d) is a complete
b-metric space (see Czerwik [8]).

Definition 2.3 ([7]). Let (X,d) be a b-metric space. Then a sequence {zp}nen in X is
called:

(i) convergent if and only if there exists € X, such that d(z,,z) — 0 as n — oco. In

this case, we write lim z,, = x.
n—oo

(ii) Cauchy if and only if d(zp, x,) — 0 as m,n — oo.
Remark 2.1 ([7]). In a b-metric space (X, d), the following assertions hold:

(i) a convergent sequence has a unique limit;
(ii) each convergent sequence is Cauchy;

(iii) in general, a b-metric is not continuous.

Definition 2.4 ([7]). The b-metric space (X,d) is complete if every Cauchy sequence in
X converges.

Definition 2.5 ([2]). Let (X,d) be a complete metric space and and f, : X — X |
n = 1,2,3,..., N be contractions with the corresponding contractivity factors b,,n =
1,2,3,..., N . Then the system {X; f,,n = 1,2,3,..., N} is called an iterated function
system (IFS) in the metric space (X,d) with contractivity factor b = max{b, : n =
1,2,3,...,N} .
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Theorem 2.1 (]2]). Let (X, d) be a complete metric space. If w,, : X — X is a contraction
with respect to the metric d for n = 1,2,..., N , then there exists a unique non-empty
compact subset A of X that satisfies A = f1(A)U fo(A)U---Ufn(A4) . Ais called the
self-similar set with respect to {f1, fo,..., fn} -

Definition 2.6 ([2]). Let (X, d) be a complete metric space and {X; f, ,n =1,2,3, ...,
N} be an IFS. The Hutchinson-Barnsley operator (HB operator) of the IFS is a function
W: K(X)— K(X) defined by W(B) = J_, fu(B), for all B € K(X).

Theorem 2.2 ([2]). Let {X; f, ,n=1,2,3,..., N} be an IFS of contraction mappings
on metric space X and W of the HB operator of the IFS. Then,

(i) The HB operator W is a contraction mapping on K (X).

(ii) There exists only one compact invariant set Ag € K (X) of the HB operator W called
the attractor (fractal) of IFS or equivalently, W has a unique fixed point namely
Ax € K(X) .

Definition 2.7 ([22]). A mapping ¢ : R4 — R, is called a comparison function if it is
increasing and ¢"(t) — 0,n — oo for any ¢t € R,..

Lemma 2.1 ([22]). If ¢ : R — R, is a comparison function, then:
(i) each iterate oF of ¢, k > 1, is also a comparison function;
(ii) ¢ is continuous at zero;
(i) ¢(t) < t, for any ¢ > 0.
The following concept of (¢)-comparison function is introduced by Berinde [6].
Definition 2.8 ([6]). A function ¢ : Ry — R, is called a (¢)-comparison function if:
(i) ¢ is increasing;

(ii) there exist ko € N,a € (0,1) and a convergent series of nonnegative terms » ;- | vy
such that
¢F(t) < ad(t) + o, (2.1)
for k> kg and any t € R..

Berinde [6] extended the concept of (¢)-comparison to b-comparison functions in the frame-

work of b-metric space in the following manner.

Definition 2.9 ([6]). Let b > 1 be a real number. A mapping ¢ : R — R is called a

b-comparison function if:

(i) ¢ is monotone increasing;

(ii) there exist ko € N,a € (0,1) and a convergent series of nonnegative terms » ;- | v
such that
PGt < abf (1) + ui, (22)
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Lemma 2.2 ([5]). If ¢ : R4 — R4 is a b-comparison function, then:
(i) the series Y po, b*¢" () converges for any t € Ry;
(i) the function s, : Ry — Ry defined by sp(t) = Y peq b¥¢"(t), t € Ry, is increasing
and continuous at 0.
Lemma 2.3 ([20]). Any b-comparison function is a comparison function.
Definition 2.10 ([26]). Let us consider a map f : X — X, we say that f is a

(i) ¢— contraction if d(f(x), f(y)) < ¢ (d(z,y)), for any z,y € X, where ¢ : [0,00) —
[0,00) is an increasing map and ¢P(t) — 0 as p — oo, for every ¢ > 0, where
&P = ¢ o pP~! means the p-times composition of ¢.

(i) Banach contraction with the contraction factor a € [0, 1), if it is ¢— contraction,
where ¢(t) = at;

(i) Contractive if d(f(x), f(y)) < d(x,y), for all z,y € X, x # y.

(i) Meir-Keeler type mapping if, for each & > 0, there exists 6 > 0 such that

z,y € X,e <d(z,y) <e+d=d(f(x), fly) <e.

Definition 2.11 ([22]). Let (X,d) be any b-metric space. An operator f : X — X is a

Picard operator if:
(i) Fix f = {2*} where Fix f = {z € X|z = f(z)}
(ii)) f™(z) — z*, as n — oo, for all z € X.

Now we define generalized mixed iterated functions on the patterns of Llorens-Fuster et

al [13] and Mihail et al [15].
Definition 2.12. A function f: X™ — X , is said to be a:

(i) generalized ¢— contraction, if ¢ is a comparison function and for each 1, x2, ..., Zy;
Y1,Y2, - -+ Ym € X, such that x; # y; for some ¢ € {1,2,...,n}, we have,

d(f(.%'l,.%'g, ce 7$m)7 f(y17y27 cee 7ym)) <
¢(max{d(z1,y1),d(z2,92), ..., d(Tm,Ym)})

(ii) generalized a-contraction [15], if a € [0,1) and for each

X1, L2,y T Y1, Y2, - - Ym € X, such that z; # y; for some i € {1,2,...,n}, we

have,
d(f(ﬂ?l,ﬂ?Q, cee axm)af(ylayQa cee aym)) S

a max{d(xl, yl)a d(x% y2)a ceey d(xma ym)})
where, contractivity factor is defined as follows:

d(f($1, cee axm)af(yla cee aym))
max{d(xlayl)’ cee ’d(xmaym)}

a= sup
Tlyer ey TmsYly- s Ym
max{d(xlayl)’ s ’d(xm,ym)} >0
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(iii) generalized Meir Keeler contraction if for every € > 0, there exists 6 > 0 such that,

for each x1,29,...,Tm;Y1,Y2,--.,Ym € X, we have
max{d(xlayl),' .. ’d(xm,ym)} <et+d= d(f(xl’ . ’xm)’f(yl,' .. ’ym)) <e€

(iv) generalized contractive if for each x1,x9, ..., Tm;y1,Y2,- -, Ym € X, such that x; # y;
for some i € {1,2,...,n}, we have

d(f(x1,xe, ..y xm), fY1,92, -« Um)) <
max{d(x1,y1),d(z2,y2), -, AT, Ym)}

Now we define generalized mixed iterated function system or GMIFS from X™ = x7* | X —
X, rather than contractions from X to itself.

Definition 2.13. Let (X, d) be a complete b-metric space and m € N. A generalized mixed
iterated function system or GMIFS on X of order m is defined by S = (X, (fr)k=1,n)
consists of a finite family of functions (fi)k=1n, fx : X" — X such that fi, fa,..., f, are
generalized ¢— contraction or generalized Banach contraction or generalized Meir Keeler
contraction or generalized contractive.

Definition 2.14 ([16]). Let f: X™ — X and K (X) be the set of all non-empty compact
subsets of X. The function Fy : K(X)™ = x| K(X) — K(X) is defined by

Ff(K17K2,...7Km) = f(Kl X K2 X ... X Km)
={f(z1,22,...,2m) rz; € K;,Vje{l,...,m}}
for all K1, Ko,...,K,, € K(X), is called the set function associated with function f.

Definition 2.15. Let S = (X, (fx)kr=1,,) be a GMIFS. The function Fg : K(X)™ — K(X)
n

is defined by Fs(K1,Ko,...,Kp) = U Fp (K1, Ka,...,Ky,) for all Ki,Ks,..., K, €
k=1
K (X) is called the set function associated with the GMIFS S.

3 MAIN RESULTS

Theorem 3.1. Let (X, d) be a complete b-metric space such that the b-metric is a contin-
uous functional and f : X" — X be a generalized ¢ -contraction with ¢ a b-comparison

function or generalized Meir Keeler contraction. Moreover, for any xg, x1,...,Zm_1 € X,

the sequence (xy,)n>1 defined by pim = f(Zn, Tpt1,-- -, Tntm—1), V1 € N has the prop-

erty that lim z, = . Then there exists a unique o € X such that f(«o,q,...,a) = a.
n—o0

Proof. (i) First we prove that if f : X — X be a generalized ¢ -contraction then there

exists a unique o € X such that f(a,a,...,a) = a.
Let zg,x1,...,Zm—1 € X. Since the sequence {x,} is defined by
Tontm = f(Tny Tntts- -y Tnim—1), Y1 € N, we have
A(Tntms Tntm+1) = d(f(Tn, Tnt 1, -5 Tngm—1)s f(Tnt1, Tng2,s -+ o5 Tngm))
< gb{max(d(xna anrl), d(anrl, xn+2)a S d(anrmfl, anrm))}
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which by induction yields
d(xn-l—nu xn—l—m-‘,—l) < ¢n—m+1{max(d(x07 xl)a d(xh .%'2), SRR d(xm—l ) xm)} (31)
As d is a b-metric, for n > 0, p > 1, we obtain:

bd(Zntm» Tnymy1)+

A e < 3.2
(Zntm: Tnmep) D*d(Znymi1, Tnime2) + -+ WP d(Tnimip—1, Tnimip) .
b max(d(zo, v1), d(w1,22), . . ., d(Tm—1,Tm))
b2 ¢n7m+2 max(d 20, T1 ’d T1,29), .. ,d Tm—1,Tm
Ao Snsmes) < {max(d( ), d( ) ( )} (3.3)
bP ¢n—m+p{max(d(x0, xl)’ d(ajl, $2), R ,d(vxmflaxm))}
promHL gnmmH max{d(zo, 1), d(w1, 22), . .., d(Tm—1, Tm) }
1| b R2en 2 max{d(wg, 1), d(21, 2), - -, d(Tm—1, T
Lo S < L o max{d(zg,x1),d(x1,x2) (Tm—1 )}
bn—m+p¢n—m+p maX{d(JUOa ZCl), d(‘rla .1'2), s ,d(l'm—l, ZCm)}
(3.4)
Suppose S, = Y- 0" ¢" (max{d(zo, 21), d(21,22), ..., d(¥m—1,2m}), for n > 1.
Then (3.4) becomes
1
d($n+maxn+m+p) < W [Sn*mJFP - Sn*m] ’
Supposing d (zg,z1) > 0, d(z1,22) > 0, ..., d(Tp-1,7,) > 0, n,m,p > 1, the series
ZZO:O bk¢k(max{d(xo7x1)ad(xhxz)a s ,d(l’n_l,xn}) CONVErges, so there is 5 = lim Sn

n—o0

€ Ry. Sinceb > 1, thus {z,,} is a Cauchy sequence in the complete b-metric space(X,d).

Therefore, there exists a € X, such that « = lim z,.
n—oo

Now we prove that f(a,a,...,a) = a.
For n,m > 0, we have

d(xn+m’ f(aa Q... ,Oé)) = d(f(xn’ Tn+ly--- aanrm*l)’ f(Oé, Q... ,O[))

< ¢p{max(d(xpn, ), d(xpi1, @), ..., d(Tpym-1,x))}

But d is a continuous and ¢ is also continuous at 0.

Letting m,n — oo, we obtain
d(a, f(a,aq,...,a)) <0, which implies f(o,q,...,a) = .

Suppose there exist § € X such that g = f(5,5,...,0) and a # 3, then we have
d(a,B) =d(f(a,....q), f(B,...,8)) < ¢{max(d(c, B),...,d(a, B))} < ¢ (d(e, B))

which is a contradiction.

Thus there exists a unique « € X such that f(o, «,...,a) = a.

(ii) Now we consider f to be a generalized Meir Keeler contraction.

For z1,...,Zm,y1,-..,ym € X, putting ¢ = max{d(x1,y1),...,d(Tm,Ym)},
we obtain

d(f($1, . axm)a f(yla . aym)) < max{d(ml,yl), cee ’d(xmaym)}'
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So {f™(x1,...,xm), f"(y1,-..,Ym)} is nonincreasing and thus converges.
From the assumption we have,

lim d(f™(x1,...,2m), f"(Y1,---,ym)) = 0.

n—o0

Fix zg,x1,...,2m—1 € X and define a sequence {z,} in X by

Tpn4+m = f(xna Tn+1s--- 7xn+m—1)7

Fix € > 0, then be > 0, b > 1, is also true and there exists 6 € (0, be) or %5 € (0,e) such
that

max{d(xhyl)? LRI 7d(xm7ym)} <e+ %5 lmphes d(f(.%'l, e 7'%'771)7 f(y17 e 7ym)) <e.
Since lim d(@y4m, Tnim+1) = 0, there exists p € N, with d(zp4p, Tnipt+1) < 6.
n—oo

We shall show,
d(xn-i-pa xn+m+p) <e+ 57 (3'5)
for m € N by induction. For m = 1, it is obviously true.

We assume that it holds for some m € N. Then we have d(zp1pt1, Tntmipr1) < €, but €
be any nonnegative small number, so d(Zp4p+1, Tntmipt1) < %5 is also true and hence

A(Tntp; Trmtpt1) < 0(d(@nip, Tnapt1) + A(Tnipt, Tngmept1)) <0+ e

So, by induction (3.5) holds for every m € N. Therefore we have shown

lim sup d(xy,, zm) = 0.
nN—00 m>n

This implies that {x,} or {f"z} is a Cauchy sequence.
Since X is complete, {x,} converges to some point « € X.
Now we prove that f(a,...,a) = «a. For n,m > 0, we have

d(xn-i-mn f(Oé, s ,Oé)) = d(f(xru Tn41y--- ,$n+m_1), f(aa s ,Oé))
< max{d(zy,,a),...,d(Tptm-1,a)}
But d is continuous, so letting m,n — oo, we obtain
d(a, f(a...,a)) <0 which implies f(q,...,a) = a.

That is, « is a fixed point of f. Suppose for every g € X, we have
f(B,...,8) =0, e =max{d(a, 5),...,d(e, )} and a # (3, then we have

dla, B) =d(f(ay...,a), f(B,...,8)) <e
= max{d(a, 8),...,d(a, B)}
< d(a, B).

This is a contradiction. So the fixed point is unique. U

If we substitute m = 1 in part (i) of Theorem 3.1 above, the following result of M. Pacurar
[Theorem 4, part 1, 23] is obtained.

Corollary 3.1 ([20]). Let (X,d) be a complete b-metric space such that the b-metric
is a continuous functional and f : X — X be a ¢— contraction with ¢ a b-comparison
function. Then there exists a unique a € X such that f(a) = «, that is, f is a Picard

operator.
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In part (ii) of Theorem 3.1, if we put m = 1, b = 1 and define x,, 1 = f(z,,), the following
result of Meir and Keeler [14] and Suzuki [28] is obtained.

Corollary 3.2 ([14],]28]). Let (X,d) be a complete metric space and f : X — X be a
Meir Keeler contraction, i.e., for every € > 0, there exists d > 0 such that

dz,y) <e+0=d(T(x),T(y)) <e

Then there exists a unique o € X such that f(«a) = a.
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Abstract : The present paper updates three ancient Egyptian fraction texts, the
Akhmim Wooden Tablet, the Egyptian Mathematical Leather Roll, and the Rhind
Mathematical Papyrus. The three hieratic texts were written in the Egyptian Middle
Kingdom era (2050 BCE to 1550 BCE), a time of innovation. The paper demon-
strates that neglected scribal number theory was written in finite arithmetic. The
finite arithmetic scaled rational numbers and commodities to exact unit fraction se-
ries. Modern scholars transliterated certain hieratic shorthand notes into hieroglyphic.
Other original scribal notes were improperly transliterated by modern scholars. This
lack of clarity confused the historical record. Despite omissions, scholars showed that
the scribes used algebraic methods, common denominators, progressions, inverses, and
proportions that calculated areas, quotients, remainders, solutions to second degree
equations, slopes, and volumes. The update of three texts repairs scribal shorthand
notes. By including missing information, complete ancient arithmetic sentences are
written and appreciated in modern arithmetic. The three updated hieratic texts reveal
previously unreported scribal skills, properties of ancient number theory, and aspects
of ancient economic life that were enhanced by Egyptian fraction innovations.

1 INTRODUCTION

Egyptian fraction arithmetic was closely linked to Old Kingdom mathematics. Old King-
dom numeration, and weights and measures systems were cursive and binary. The hiero-
glyphic numeration system rounded off infinite series representations of rational numbers
to six terms. The Horus-Eye weights and measures system overlooked a 1/64 unit rounding

error within a 6-term finite series (Gillings 1972).
1/2+1/4+1/8 +1/16 + 1/32 + 1/64

Note that to exactly sum to unity (1), a 1/64 unit must to be added to the Eye of Horus
series
1/2+1/44+1/8+1/16+1/324+1/64+1/64 =1

The binary aspect of the Old Kingdom weights and measures was used in balance beam
valuations of commodities, business transactions, and higher math. A significant change
in writing binary unit fraction series as Eye of Horus series took place in the Middle
Kingdom. The inexact Eye of Horus series was replaced after 2050 BCE with exact series.
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Scribes thereafter introduced exact Egyptian fraction innovations. Omne innovation
demonstrated finite arithmetic within balanced algebraic statements that converted ratio-
nal number n/p to exact unit fraction series. For example, 4/7 was written as 1/2+1/14
(Silverman 1975). Middle Kingdom arithmetic written in Egyptian fraction series cor-
rected. Old Kingdom weights and measure rounding errors. Scribes corrected binary
measurements and balanced algebraic statements by including the missing portion of the
1/64 of a unit or portion thereof (Gardner 2006). Other exacting innovations created finite
units of measure (Gardner 2008b).

Scholars, from1860 to the present, transliterated hieratic shorthand notes into frag-
mented sentences. Transliterations converted hieratic script to hiero glyphs and these
transliterations were converted into modern arithmetic and sentences. The two-step trans-
lation process revealed algebraic methods, common denominators, progressions, inverses,
primes, and proportions. Scribes found areas, proofs, quotients, remainders, second-degree
equation solutions, slopes, and volumes (Belluck 2010, Gillings 1972).

The deeper aspects of hieratic shorthand were not translated well enough to expose
subtle scribal innovations. Scholars worked hard to explain concise 2/n tables and unit
fraction statements that relied on the 2/n tables (Peet 1923, Chace 1927). The Egyptian
fraction historical record under-reports scribal methods that included rational numbers,
least common multiples, common divisors, and red auxiliary numbers (Gardner 2011).
Poor 20th century transliterations led to inconsistent translations.

This chapter begins to correct the Egyptian fraction historical record by updating six
introductory Egyptian Mathematical Leather Roll (EMLR) rules and asks the question,
“Howwere the best unit fraction series selected by scribes?” Proposed answers validate
additional scribal innovations, and scribal arithmetic skills that implemented each inno-
vation. The scope of this chapter is limited to early number theory and volume topics re-
ported in the EMLR, the Rhind Mathematical Papyrus (RMP), and the Akhmim Wooden
Tablet (AWT). Other related metrology topics are not discussed. A future paper may be
dedicated to the weighing of bread, gold, silver, tin, and commodities in the unit called
debens.

2 UPDATING METHODOLOGY

Egyptian fraction texts are reported in historical context free from modern mathematical
metaphors. To achieve readability in modern arithmetic, scribal shorthand conventions
are replaced by a seldom-used scribal longhand conven tion. For example, the EMLR
began with:

1/8 = 1/10 + 1/40

The simplest possible method (Occams razor) created an equality likely included LCMs
and red auxiliary numbers. A scribal longhand convention reported in RMP 36 and RMP
37, scaled 1/8 by LCM 5 to 5/40. The best divisors of 40 were selected by the scribe
that summed to numerator 5. Only 4 + 1 was available in this case. RMP 36 would have
recorded 441 in red. Applying the seldom used RMP longhand convention to the EMLR,
line 1 can be re-written as:
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1/8(5/5) = 5/40 = (4 + 1)/40 = 1/10 + 1,/40.

3 EGYPTIAN MATHEMATICAL LEATHER ROLL AND
THE RHIND MATHEMATICAL PAPYRUS

This update focuses on the EMLR and early number theory that connect to the RMP 2/n
table (Gardner 2002). The EMLR converted 17 rational numbers to 26 unit fraction series.
Scribal errors muddled three of the series. Six 1/2n rational numbers 1/2,1/4,1/8,1/16,1/32,
and 1/64 and ten other rational numbers 1/7,1/9,1/10,1/11 1/13,1/14,1/15,1/20, and
1/30 were converted to unit fraction series. One other trivial case reported 1/6+1/6 = 1/3.
Eight of the 17 rational numbers appeared twice, and one rational number, 1/8, appeared
thrice times reporting three different unit fraction series. The 1/13 line was unreadable.
A nine year old paper suggested that the EMLR was encoded by six rules:

1/2n = (1/A)(A/2n) (Rule 1.0)
1/ = (1/4)(A/p) (Rule 2.0)
1/pa = (1/A)(A/pg) (Rule 3.0)
1/8 = (1/25)(25/8) = 25/200 = 1/25 + 17,200 (Rule 4.0)
17/200 = 1/15 + 1/75 + 1/200 (Rule 5.0)
1/8 = 1/25 +1/15 + 1/75 + 1,/200 (Rule 6.0)

The approach erroneously suggested that a modern 1/p = (1/A)/(A/p) method was used
by the EMLR student scribe (Gardner 2002). This update proposes to repair the EMLR
historical record by showing that the EMLR scaled rational numbers 1/p and 1/pg by
seven LCMs that applied six rules:

(1/2n)(m/m) = m/2mn (Rule 1.1)
(1/p)(m/m) =m/mp (Rule 2.1)
(1/pq)(m/m) = mp/mpq (Rule 3.1)
Both:
(1/8) = (1/25)(25/8) = 25/200 = 1/25 + 17/200 (Rule 4.1)
(1/16) = (1/25)(25/16) = 25/400 = 1/50 + 17/400
Both:
(17/200)(6/6) = 102/1200 = 1/15 + 1/75 + 1/200 (Rule 5.1)
(17/400)(6/6) = 102/2400 = 1/30 + 1/150 -+ 1/400
Both:
1/8 = 1/25 +1/15 + 1/75 + 1,200 (Rule 6.1)

1/16 = 1/50 4 1/30 + 1/150 + 1,/400

The EMLR cited two out-of-order series without demonstrating a calculation method.
Line 8 of the EMLR converted 1/8 to 1/25 + 1/15 + 1/75 + 1/200. Searching for the
scribal calculation method, Rule 4.1 scaled 1/8 by LCM 25 to 25/200, which subtracted
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1/25 obtained 17/200. Rule 5.1 scaled 17/200 by LCM 6 to the unit fraction series 1/15+
1/75 4+ 1/200. Rule 6.1 reported the total. Line 9 of the EMLR converted 1/16to1/50 +
1/30 + 1/150 + 1/400. Rule 4.1 scaled 1/16 by LCM 25 to 25/400 and subtracted 1/50,
which obtained 17/400. Rule 5.1 scaled 17/400 by LCM 6 and obtained a unit fraction
series. Rule 6.1 shows the total. Seven LCMs in total were used to scale EMLR, rational
numbers 1/2n,1/p and 1/pg. Final EMLR series were sometimes scaled to awkward
unit fraction series. But, how were the best unit fraction series selected by the student
scribe? To discuss the best unit fraction series question, another modern splitting proposal
recommended:

1/(ab) = [1/(a +b)](1/a + 1/b) (proposed rule 7.0)

Using the example:
1/(4)(7) =1/11)(4+7)=1/44+1/77

a recent proposal asked if the EMLR student understood the rule (Malkevich 2011) 7

The seven LCMs scaled rational numbers 1/2n,1/p and 1/pq to sometimes awkard unit
fraction series. Restated EMLR statements include LCMs and real auxiliary numbers show
that the student converted 1/8, the thrice repeated rational number, by two sigle LCMs-
3 and 5- and a pair of LCM- 25 and 6 per :

1 %(g):%:(}_z):%%+2%ll (line 13)
9. §(§5):%2:4—0:1_0+4_0 (line1)
3. 5() = (20)

(a) 25/200 = (8 + 17)/200 = (1/25 4 17/200)
(b) 17/200(6/6) = 102/1200 = (80 + 16 4 6)/1200 = 1/15 + 1/75 + 1/200
(c) 1/8 =1/25+1/15+1/75 4+ 1/200 (line 8)

The 26 restated EMLR statements used seven LCMs 2,3, 5,6, 7,10, and 25. Two 1/8 and
1/16 sentences used four LCMs- 3, 5, 25, and 6 and the remaining 24 sentences used six
LCMs 2, 3, 5, 6, 7, and 10 (Gardner 2007). To answer the proposed question, based on
the EMLR scaling of 1/14 by LCM 3, consider:

1/14(3/3) =3/42 = (2 4+ 1)/42 = 1/21 4+ 1/42(line 21)
and the EMLR-like series:
1/28(3/3) =3/84=(2+1)/84=1/42+1/84

Suggests the EMLR student would have scaled 1/28 by LCM 3. Moreover, the EMLR
student would have considered LCM 6, 8, 10, 12, and 14, such that:

(a) 1/28(6/6) = 6/168 = (3 +2+1)/168 = 1/56 + 1/84 + 1/168
(b) 1/28(8/8) = 8/224 = (7 +1)/224 = 1/32 4+ 1/224

(c) 1/28(10/10) = 10/280 = (7 + 2 + 1)/224 = 1/40 + 1/140 + 1/280
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(d) 1/28(12/12) = 12/336 = (7 + 3 +2)/336 = 1/49 + 1/112 + 1/168
(e) 1/28(14/14) = (14/392) = (7 + 4+ 2+ 1)/392 = 1/56 + 1/98 + 1/196 + 1/292
(f) 1/28(16/16) = 16/448 = (8 + 7 + 1) /448 = 1/56 + 1/64 + 1/448

Note that alternate EMLR-like series last-term denominators are larger than the LCM 3
series last term denominator.

Going on, was the best EMLR series the one with smallest last-term de- nominator?
Or, was the best EMLR series the one with shortest series and the smallest first-term
denominator? The question of the best EMLR conversion of 1/n and 1/p to a unit fraction
series can be answered by discussing the best RMP 2/n table series (Gardner 2002, 2009b).
To begin, 87 RMP problems used three rational number conversion methods:

(a) 2/n(m/m) =2m/mn (Rule 8.0)
(b) n/p=(n—2)/p+n/p (Rule 9.0)
(¢) p/p = (numerators summed to p)/p (Rule 10.0)

The 2/n table scaled 2/3, 2/5, 2/7 to 2/101 to the best unit fraction series (Gardner
2008a) The 51 rational numbers were scaled by 15 LCMs2, 3, 4, 6, 8, 10, 12, 20, 24, 30,
36, 40, 56, 60, and TOfollowed by 28 sets of red auxiliary numbers; facts are included in
Appendix II.

Red auxiliary numbers did not appear in the majority of the RMPs short- hand notes.
As scholars reported, red auxiliary numbers were cited in RMP 7 through RMP 20 as
completion problems (Gillings 1972). This paper suggests that scribal constructions of
the 2/n table must include LCMs and red auxiliary numbers. By considering the best
LCMs and the best red auxiliary numbers presented in RMP 36 and 37, wider views of
2/n table calculations and scribal skills are offered. Scholarly reviews of scribal shorthand
notes suggest that LCMs and red auxiliary numbers were not understood beyond RMP 7 to
RMP 20 completion problems (Gillings 1972). Appendix II is written in scribal longhand
that cites the best LCMs and the best red auxiliary numbers. The scribal longhand offers
an additional scribal innovation.

Rule 8.0 scaled n/p by LCM m to mn/mp that defined the scribal longhand innovation.
The best divisors of denominator mp were summed to numerator mn. Each red auxiliary
number wasdivided by mp that calculated a unit fraction. The finite sum of the unit
fractions equaled the initial rational number n/p.

A breakdown of 28 sets of red auxiliary numbers report one set, (3+ 1), that appeared
16 times; a second set, (5+1), that appeared four times; a third set, (7+1), that appeared
three times; and a fourth and fifth set, (114 1) and (19+3+2), that each appeared twice.
Twenty- three (23) sets of red number numbers appeared once. The 23 single red number
series followed Rule 1 were summed to numerator 2m.

Rule 8.0 did not work for 30/53, 28/97, and other rational numbers. The second
method (Rule 9.0) solved otherwise impossible n/p conversions. The method was a parallel
to the EMLR lines that scaled 1/8 and 1/16 by LCM 25 and LCM 6. Rule 8.0 replaced n/p
with (n-2)/p + 2/p and solved (n -2)/p by one LCM with the best red auxiliary numbers,
and 2/p by a second LCM with the red auxiliary number series (Gardner 2009a).
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Ahmes provided two proofs in RMP 36 and RMP 31. The first replaced 30/53 with
28/53+2/53, and solved 28/53 by LCM 2 and 2/53 by LCM 30 (in RMP 36). The second
proof replaced 28/97 with 26/97 + 2/97, and solved 26/97 by LCM 4 and 2/97 by LCM
56 (in RMP 31) (Gardner 2009a).

Rule 9.0 points out an important use of 2/n tables, a method that converted difficult
rational numbers by solving two rational numbers by Rule 8.0 LCMs and red auxiliary
numbers. The third RMP rule (Rule 10.0) partitioned unity (1) into vulgar fractions such
as 53/53 into:

53/53 =2/53 +3/53 4+ 5/53 + 15/53 + 28/53

Rule 10.0 was mentioned in RMP 36. Ahmes partitioned the identity 53/53 into six Rule
8.0 unit fraction series:

53/53 = (24 345+ 15 + 28)/53 = 2/53 + 3/53 + 5/53 + 15/53 + 28/53

Five LCMs30, 20, 12, 4, and 2and three sets of red auxiliary numbers (53 + 5 + 2), (53 +
442+ 1), and (53 + 2 + 1) scaled the five n/53 rational numbers per:

2/53 by LCM 30 = 60/1590 = (53 + 5+ 2)/1590 = 1/30 + 1/318 + 1/795
3/53 by LCM 20 = 60/1060 = (53 + 4 + 2 + 1)/1060 = 1/20 + 1/265 + 1/530 + 1/1060
5/53 by LCM 12 = 60/636 = (53 + 4 + 2+ 1)/636 = 1/12 + 1/159 + 1/106 + 1/212
15/53 by LCM 4 = 60/212 = (53 + 4 + 2+ 1)/212 = 1/4 4+ 1/53 + 1/106 + 1/212

The importance of the rule 10.0 offers a fail-safe third conversion method that always
scaled rational number n/p to a concise unit fraction series (Gardner 2009b). The method
defined a virtual table. Virtual unity tables were used as an alternative to the second
RMP n/p conversion rule. Focusing on RMP 36, 2/53 was scribal long hand scaled by
LCM 30 to 60/1590 within the balanced sentence:

2/53 = 60/1590 = (53 + 5 + 2)/1590 = 1/30 + 1/318 + 1/795

Divisors of numerator 60 = (53 4+ 5 + 2) were recorded in red. Red made it clear that the
best divisors had been selected. The first RMP conversion rule was used 24 times in the
EMLR. Egyptian scribes tried to write the best unit fractions series that were available.
Rephrasing scribal notes begins to parse the scribal skills topics. Considering Ahmes best
2/35 and 2/91 series by using an EMLR~type rule reports:

(a) 2/35=1/30 + 1/42

(a) as per proposed rule 7.0
a =5 and b = 7 such that

(b) 2/35 = (1/6)(1/5 +1/7) = 1/30 + 1/42
(b) 2/91 =1/70+1/130
(a) as per proposed rule 7.0 a = 7 and b = 13 such that

(b) 2/91 = (1/10)(1/7 4 1/13) = 1/70 + 1/130
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Ahmes 2/n table data reported

2/35 = 1/30 + 1/42
2/91 = 1/70 4+ 1/30

There is little hard evidence to refute a claim that proposed rule 7.0 was used in the RMP
2/n table. One theme offers a contrary view that Ahmes may have scaled 2/35 by LCM
30, and 2/91 by LCM 70. A small fragment of 2/35 shorthand data mentions 6/210. Had
12/210 beenmentioned, full agreement with 2/35(6/6) = 12/210 reported in Appendix II
would have closed this issue.

Since the issue is open to a small degree, readers are free to choose. Of course, had
proposed rule 7/0 been known to Ahmes,

2/99 =[(9+11)(1/9+1/11) =1/90 + 1/110
may have been the best 2/99 unit fraction series. Yet, Ahmes recorded:
2/99 =1/66 +1/198

It appears that LCM 3 was considered.

4 AKHMIM WOODEN TABLET AND THE RHIND MATH-
EMATICAL PAPYRUS

Egyptian scribes scaled rational numbers n/p to unit fraction series within practical state-
ments. One hekat of grain was scaled to 64/64 of a hekat, and one hekat of grain was
scaled to 320 r01/320 a hekat. Thus, 64/64 hekat and 320 ro both meant 1 hekat. In RMP
36, (3/53)ro was scaled by LCM 20 to (1/20 4+ 1/265 + 1/530 + 1/1060) hekat

Scribal rational numbers, LCMs, red auxiliary numbers, 2/n tables, al- gebra, geom-
etry, unit fraction series, and hekat (volume) units jump-started Middle Kingdom finite
arithmetic. A developing economy was the beneficiary. Scribes created finite quotient and
exact remainders data, combining theoretical methods that precisely valued commodi-
ties. Commodities, including beer and bread, were economically allocated for a range of
purposes. One allocation paid pre- determined wages to a diverse labor force.

The AWT reports five exact divisions of a hekat by a quotient and scaled remainder
method. The AWT detailed a hekat unity 64/64 divided by 3, 7, 10,11, and 13 using;:
(64/64)/n = Q/64 + (5R/n)ro

Example 4.1. (64/64)3 = 21/64 + (5/3)(1/320) = (16 + 4 + 1)/64 + (5/3)r0 = (1/4 +
1/16 + 1/64)hekat + (1 + 2/3)ro

Each answer was proven by inverting the divisor and multiplying:

Example 4.2. [(1/4 4+ 1/16 4 1/64)hekat + (1 + 2/3)ro] times 3 = [21/64 4+ 5/3(1/320)]
hekat times 3 = (63/64 + 1/64)hekat = 1 hekat

Surviving records report that absentee landlords grew grain and flax for clothing. The

hekat was used from the field to the commodities consumed as wages. Workers were paid
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at standard Middle Kingdom levels, from two to eight hekats a month. During flood years,
low crop yields managed pay rates to be proportionally reduced (Ezzamel 2002).

The RMP and the Kahun Papyrus include three arithmetic progression allocations
(Gardner 2008c). Several Middle Kingdom texts included pesu and hekat calculations.
The RMP converted hekats into different strengths of pesu beer and bread by applying an
inverse proportion (Clagett 1999). Distributions of commodities were achieved by arith-
metic proportions discussed in RMP 40 and RMP 64 (Gardner 2008c). Scribal longhand
included rational numbers, least common multiples, red auxiliary numbers, and other in-
novations. Scribal multiplication and division sentences reveal inverse operations with
ancient number theory properties. Longhand volume sentences reveal that the hekat was
scaled to 64/64, 320 ro, and a pesu unit (Gardner 2006).

Pesu sentences show that an inverse arithmetic method scaled strengths of loaves of
bread, jugs of beer, and other commodities (Gillings 1972).

The improved Egyptian fraction numeration, and weights and measures assisted Pharaoh
and absentee landlords to control granary inventories. Longhand sentences can be read
in modern arithmetic. Unit fraction data included practical valuations of commodities
double-checked inventories and allocations as wages. Farm productions and commodity
inventories were often decentralized. Productions of bread, beer, and other grain-based
product inventories were monitored. Inventory withdrawals were scaled in grain units to
pay wages (Ezzamel 2002). Scribal algebraic geometry created linear cubits, square cubits,
volume khar unit, and other hekat unit formulas. A cubit times a squared-cubit was tran-
scribed as a cubit-cubit (Peet 1923, Gillings 1972). The cubit-cubit contained 3/2 khar.
The khar contained 20 hekat. A hekat contained close to 4800 cm?® when translated into
modern metrics. Theoretical and practical cubit measurements of cubit-cubits, khar, 400-
hekat, 100-hekat, 4-hekat, 2-hekat, 1-hekat, 4-ro, 2-ro, and 1-ro report hekat sub-divisions
(Gardner 2011).

Scribes converted rational numbers to concise unit fraction series for several purposes.
To value commodities, scribes usually scaled the hekat three ways. The first replaced one
hekat with64/64 and applied a multiplier, 1/n, that created a finite quotient Q/64 plus
a remainder (5R/n)ro. This class of hekat substitution was used in the AWT and over
40 times in the RMP (Gardner 2006). The second hekat form replaced one hekat with
320 ro. The 320 ro form created a multiplier 1/n and rational number quotients plus
unit fraction remainder answers. Answers were double- checked by an inverse arithmetic
operation (Gardner 2009a).

In RMP 38, a multiplier 7/22 reported:

320ro times7/22 = 2240/22 = (101 + 9/11)ro.
Rational number 9/11 scaled to a unit fraction series by LCM 4 such that:
9/11 x (4/4) =36/44 = (22+11+2+1)/44 = (1/2+ 1/4+1/22 4+ 1/44)

Ahmes recorded (101 4+ 1/2 +1/4 + 1/22 4+ 1/44)ro by writing ciphered sound symbols,
denoted as fractions by placing a line over the symbol, writing from right to left, omitting
plus (+) signs, not making it clear that that 101 was included.

Scribes recorded weights and measures in double-entry bookkeeping systems that made
scribes accountants and mathematicians. Inventory control answers were proven. In RMP
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38, Ahmes proved (101 +1/2+ 1/4 4 1/22 4+ 1/44)ro by multiplying by 22/7, the inverse
of the 7/22 multiplier such that:

(101 +1/2 4 1/4 4+ 1/22 + 1/44)(22/7)ro = (2204 + 22 + 11 + 2+ 1) /Tro = 320ro

In returning 320 ro, Ahmes commented that an exact hekat had been found. The
scribal multiplication and division operations were inverse operations. Transliterations in-
correctly reported duplation multiplication and single false position division as historical
inverse operations (Chace et al. 1927, Clagett 1999, Peet 1923). Scribal division was based
on a well- known definition, invert the divisor n to 1/n and multiply. Longhand scribal
arithmetic reported multiplication and division as inverse operations to one another. To
prove a multiplication answer, scribes inverted multiplicand n to 1/n and multiplied. To
prove a division answer, scribes inverted divisors n to 1/n and multiplied. Practical hekat
measurement units were recorded in wage payments and implemented management con-
trols in finite Egyptian fraction quotients and remainders (Gillings 1972, Simpson 1973).
Scribes precisely scaled grain to bread, beer,and other products in Egyptianfraction state-
ments, an Appendix III topic. Pesu and besha, and des-jugs sub-units further scaled grain
products for practica wage distributions.

One RMP problem reported 5 hekats of grain produced 200 loaves of bread. The
balance of the hekats10 hekat produced different pesu strengths of beer. Each hekat
produced one, two, and three types of beerlabeled from 8/3 pesu to 6 pesudenoted by
grain content by an inverse relationship to the product. A product with 3/8 hekat of grain
reported 8/3 pesu, enhancing everyday Middle Kingdom life by another Egyptian fraction
innovation (Gardner 2009b).

5 CONCLUSIONS

This update of EMLR and AWT papers applies a scribal longhand conven- tion. A student
EMLR scribe converted 1/p and 1/pq rational numbers to 26 unit fraction series by six
introductory rules. Ahmes converted 2/p and 2/n to the 50 best unit fraction series by
three advanced rules. Scribes scaled rational numbers n/p and n/pq to unit fraction series
and selected the best LCMs with the best red auxiliary numbers. Scribal longhand exposes
early number theory. The number theory was finite and algebraic.

Middle Kingdom scribes recorded unity objects in unit fraction series. Four unities
were associated with the hekat. The unities assisted scribes in calculating wages paid in
bread, beer, meat and other commodities. Wage payments were audited in unit fraction
innovations (unities), summarized by:

(a) 1 hekat = 64/64 hekat
(b) 1 hekat = 320 ro
(c) 1/n hekat = n pesu, and n hekat = 1/n pesu
The fourth RMP unity innovation was based in Rule 10.0

p/phekat = (1/p+2/p+3/p+ ... + n/p)hekat

Scribes reported scribal multiplication and division that anticipated the modern definition
of divisioninvert the divisor and multiply.

157



6

ACKNOWLEDGMENTS

This chapter is dedicated to the memory of Professor B.S. Yadav. Professor Yadav edited

EMLR and AWT papers that provide this papers predicate. Pam Belluck, Bruce Friedman,

and Cora Dillard pro- vided themes that made this paper possible. Pam Belluck, a New

York Times writer, captured the oldest known Egyptian puzzles in everyday language.

Bruce Friedman improved early number theory discussions that reported puzzle solutions

in everyday language. Cora Dillard provided important editing for the enjoyment of the

reader.

References

1]

Belluck, P. (2010) Math puzzles oldest ancestors took form on Egyptian Papyrus, New
York Times, Science Section, Dec. 6, 2010.

Boyer, C .B., A History of Mathematics, New York, John Wiley and Sons, 1967

Chace, A. Bull, L., Manning, H.P., and Archibald, R.C. (1927) The Rhind Mathemat-

ical Papyrus. 2 Volumes. Oberlin, OH, Mathematical Association of America.

Clagett, M. (1999) Ancient Egyptian Sciences A Source Book, Volume III. Ancient
Egyptian Mathematics. Philadelphia, PA, American Philosophical Society.

Daressy, G. (1901) Catelogue General des Antiquities Egyptiennes du Musee du Caire,
Ostraca 25001 - 25385.

Ezzamel, M. (2002) Accounting for private estates and the household in the 20th
century BC Middle Kingdom. Abacus 38(2), 235-262.

Gardner, M.R. (2002) The Egyptian Mathematical Leather Roll, attested short term
and long term. In: History of the Mathematical Sciences, Grattan-Guiness, I. and
Yadav, B.S., eds. New Delhi, India, Hindustan Book Agency, pp 119-134. Note that
you had two Ga05 references listed that were not the same. I used only one, so make
sure that I used the one you intended (other one is below this ref list).

Gardner, M. Mathematical Roll of Egypt (2005) Encyclopaedia of the History of Sci-
ence, Technology, and Medicine in Non-Western Cultures. New York, NY, Springer.

Gardner, M. (2006) An ancient Egyptian problem and its innovative arithmetic solu-
tion. Ganita Bharati: Bulletin of the Indian Society for the History of Mathematics 28
(1-2), 157-173.

[10] Gardner, M. (2008a) Breaking the 2/n table Code.

http://rmprectotable.blogspot.com/. Accessed 6 April 2011.

[11] Gardner, M.  (2008b)  Economic  context of Egyptian  fractions.

http://planetmath.org/encyclopedia/Econom Berlin Papyrus.html. Accessed 6
April 2011.

158



[12] Gardner, M. (2007) Egyptian Mathematical Leather Roll. http://emlr.blogspot.com/.
Accessed 6 April 2011.

[13] Gardner, M. (2008c) Kahun Papyrus and arithmetic progressions.
http://planetmath.org/encyclopedia/Kah Accessed 6 April 2011.

[14] Gardner, M. (2009a) New and old Ahmes Papyrus classifications.
http://ahmespapyrus.blogspot.com/2009/01/ahmes-papyrus-new-and-old.html.
Accessed 6 April 2011.

[15] Gardner, Milo (2009Db) RMP 36 and the 2/n table.
http://planetmath.org/encyclopedia/RMP36AndThe2nT Accessed 6 April 2011.

[16] [Gall] Gardner, M. (2011) RMP 47 and the hekat.
http://planetmath.org/encyclopedia/RMP47AndTheHe Accessed 6 April 2011.

[17] Gillings, R. (1972) Mathematics in the Time of the Pharaohs. Cambridge, MA: MIT
Press.

[18] Malkevitch, J. (2011) Egyptian fractions. Accessed 6 April 2011.

[19] Neugebauer, O. (1962) The Exact Science in Antiquity, New York, NY, Harper and
Row; Reprint Dover, 1969.

[20] Peet, T.E. (1923) Arithmetic in the Middle Kingdom. Journal of Egyptian Archaeol-
ogy 9, 91-99.

[21] Pommerening, T. Altagyptische Rezepturen metrologish neu interpriert (2002)
Beriche zur wissenschaft-Geschichte 26(1), 1-16.

[22] Robins, Gay and Shute. Charles, The Rhind Mathematical Papyrus: an an- cient
Egyptian text, (London, British Museum Publications Ltd, London, 1987, Reprint:
New York, Dover, 1987).

[23] Silverman, D. Fractions in the Abusir Papyri (1975) Journal of Egyptian Archaeology
61, 248- 249.

[24] Silverman, D. (1997) Ancient Egypt. New York, NY, Oxford University Press.

[25] Simpson, W.K. (1973) The Reisner Papyrus. Journal of Egyptian Archaeology 59,
220-222.

[26] Vymazalova, H. (2002) The Wooden Tablets from Cairo: The use of the grain unit
hk3t in ancient Egypt. Archiv Or ientln 70, 27-42.

Appendix I. Egyptian Mathematical Leather Roll (EMLR):
adapted from Gardner (2007).

(a) (1/8)(5/5) = 5/40 = (4 + 1)/40 = 1/10 + 1/40

(b) (1/4)(5/5)= 5/20 = (4 +1)/20 = 1/5 +

159



(c) (1/3)(3/3)) =3/9 = (2 + 1)/9 = 1/4 + 1/12
(d) (1/5)(2/2)) = 2/10 = 1/10 + 1/10
(e) (1/3)(2/2) =2/6 = 1/6 + 1/6

(f) (1/2)(3/3) =3/6 =1/6 + 1/6 + 1/6

)
)
)
)
(g) 2/3=1/3+1/3

(h) (1/8)(25/25) = 25/200 = (8 +17)/200 = 1/25 + (17/200)(6/6) = 1/25 + (80 + 16

+6)/1200 = 1/8 = 1/25 + 1/15 + 1/75 + 1/200

(i) (1/16)(25/25) = 25/400 = (8 +17)/400 = 1/50 + (17/2400)(6/6) = 1/50 + (80 +
16 + 6)/2400 = 1/16 = 1/50 + 1/30 + 1/150 + 1/400

(j) (1/15)(10/10) = 10/150 = (6 + 3 + 1)/150 = 1/25 + 1/50 + 1/150, (1/6 was initial

term)
(k) (1/6)(3/3) = 3/18 = (2 + 1)/18 = 1/9 + 1/18
() (1/4)(7/7) =7/28 = (4 + 2 + 1)/28 = 1/7 + 1/14 + 1/28
(m) (1/8)(3/3) =3/24 = (24 1)/24 = 1/12 + 1/24
(n) (1/7)(6/6) = 6/42 = (3 + 2 + 1)/42= 1/14 + 1/21 + 1/42
(0) (1/9)(6/6) = 6/54 = (3 + 2 + 1)/54 = 1/18 + 1/27 + 1/54
(p) (1/11)(6/6) = 6/66 = (3 + 2 + 1)/66= 1/22 + 1/33 + 1/66
(q) (1/13)(?) = 1/28 + 1/49 + 1/196 (corrected by?)
(1/13) (6/6) = 6/78 = (3 + 2 + 1)/78 =1/26 + 1/39 + 1/78
(r) (1/15)(6/6) = 6/90 = (3 4+ 2+ 1)/90 = 1/30 + 1/45 + 1/90
(s) (1/16)(3/3) = 3/48 = (2 + 1)/48 = 1/24 + 1/48
(t) (1/12)(3/3) = 3/36 = (2 + 1)/36 = 1/18 + 1/36
(u) (1/14)(3/3) = 3/42 = (2 + 1)/42 = 1/21 + 1/42
(v) (1/30)(3/3) = 3/90 = (2 + 1)/90 = 1/45 + 1/90
(w) (1/20)(3/3) = 3/60 = (2+ 1) 60 = 1/30 + 1/6024.
(x) (1/10)(3/3) = 3/30 =(2 + 1)/30 = 1/15 + 1/30
(y) (1/32)(3/3) = 3/96 = (2 + 1)/96= 1/48 + 1/96
(z) (1/64)(3/3) = 3/192 = (2 + 1)/192 + 1/96 + 1/92

Information in this Appendix is further discussed by Gardner (2002, 2005).
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Appendix II. Rhind Mathematical Papyrus (RMP) 2/n Table
(Gardner 2008a, 2009a,2009b)

1.

2.

3.

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

2/3 =1/3 + 1/3)
2/5(3/3) = 6/15 = (5+ 1) = 1/3 + 1/15
2/7(4/4) = 8/28 = (7 + 1)/28 = 1/4 + 1/28

2/9 (2/2) = 4/18 = (3 + 1)/18 = 1/6 + 1/18

. 2/11(6/6) = 12/66 = (11 + 1)/66 = 1/6 + 1/66
. 2/13(8/8) = 16/104 = (13 + 2 + 1)/104 = 1/8 + 1/52 + 1/104
2/15(2/2) = 4/30= (3 + 1)/30 = 1/10 + 1/30

. 2/17(12/12) = 24/204 = (17 + 4 + 3)/204 = 1/12 + 1/51 + 1/68

. 2/19(12/12) = 24/228 = (19 + 3 + 2)/228 = 1/12 + 1/76 + 1/114

2/21((2/2) = 4/42 = (3 + 1)/42 = 1/14 + 1/42

2/23(12/12) = 24/276 = (23 +1)/276 = 1/12 1/276

2/25(3/3) = 6/75 = (5 + 1)/75 = 1/15 + 1/75

2/27(2/2) = 4/54 = (3 + 1)/54 = 1/18 + 1/54

2/29(24/24) = 48/696 = (29 + 12 + 4 + 3)/696 = 1/24 + 1/58 + 1/174 + 1/232

2/31(20/20) = 40/1620 = (31 + 5 + 4)/1620 = 1/20 + 1/124 + 1/155

(
(
(
(
(
(
(
(
(
(
(
2/33(2/2) = 4/66 (3 + 1)/66 = 1/22 + 1/66
2/35(30/30) = 60/1050 = (35 + 25)/1050 = 1/30 + 1/42
2/37(24/24) = 48/888 = (37 + 8 + 3 )/888 = 1/24 + 1/111 + 1/296
2/39(2/2) = 4/78 = (3 4+ 1)/78 = 1/26 + 1/78
2/41(24/24) = 48/984 = (41 + 4 + 3)/984 = 1/24 + 1/246 + 1/328
2/43(42/42) = 84/1806 = (43 + 21 + 14 + 6)/1806 = 1/42 + 1/86 + 1/129 + 1/301
2/45(2/2) = 4/90 = (3 + 1)/90 = 1/30 + 1/90
2/47(30/30) = 60/1410 = (47 4 10 + 3)/1410 = 1/30 + 1/141 + 1/470
2/49(4/4) = 8/196 = (7 + 1)/196 = 1/28 + 1/196
2/51(2/2) = 4/102 = (3 4 1)/102 = 1/34 + 1/102
2/53(30/30)= 60/1590 = (53 + 5 + 2 )/1590 = 1/30 + 1/318 + 1/795
(

2/55(6/6) = 12/330 = (11 + 1)/330 = 1/30 + 1/330
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28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

2/57(2/2) = 4/114= (3 + 1)/114 = 1/38 + 1/11429.

2/59(36/36) = 72/2124= (59 + 9 + 4) /2124 = 1/36 + 1/236 + 1/531
2/61(40/40) = 80/2440 = (61 10 + 5 + 4)/2440 = 1/40 + 244 + 1/488 + 1/610
2/63(2/2) = 4/126 = (3 + 1)/126 = 1/42 + 1/126

2/65(3/3) = 6/195 = (5 + 1)/195 = 1/39 + 1/195

2/67(40/40) = 80/2680 = (67 + 8 +5)/2680 = 1/40 + 1/335 + 1/536
2/69(2/2) = 4/138 = (3 + 1)/138 = 1/46 +1/138

2/71(40/40) = 80/2840 = (714 5 + 4)2840 = 1/40 + 1/568 + 1/710

2/73(60/60) = 120/4380 = (73 + 20 + 15 + 12)/4380 = 1/60 + 1/219 + 1/292 +
1/365

2/75(2/2) = 4/150 = (3 +1)/150 = 1/50 + 1/150
2/77(4/4) = 8/388 = (7 + 1)/388 = 1/44 + 1/308
2/79(60,/60)= 120/4740 =(79 + 20 + 15 + 6 )/4740 = 1/60 + 237 + 1/316 + 1/790
2/81(2/2)= 4/162 = (3 + 1)/162 = 1/54 + 1/162

(
2/83(60/60) = 120/4980 = (83+ 15 + 12 +10)/4980 = 1/60 + 1/332 + 1/415 +
1/498

2/85(3/3) = 6/255 = (5 + 1)/255 = 1/51 + 1/255
2/87(2/2) = 4/174 = (3 + 1)/174 = 1/58 + 1/74

2/89 = (60/60) = 120/5340 = (89 + 15 +10 + 6)/5340 = 1/60 + 1/356 + 1/534 +
1/890

2/91(70/70) = 140/6370= (91 + 49)/6370 = 1/70 + 1/130

2/93(2/2) = 4/186 = (3 + 1)/186 = 1/62 + 1/186

2/95(60,/60) = 120/5700 = (95 + 15 + 10)/5700 = 1/60 + 1/380 + 1/570
2/97(56/56) = 112/5432= (97+ 8 + 7)/5432 = 1/56 + 1/679 + 1/776
2/99 (2/2) = 4/198 = (3 + 1)/198 = 1/66 + 1/198

2/101(6/6) = 12/606 = (6 + 3 + 2 + 1)/606 = 1/101 + 1/202 + 1/303 + 1/606
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Appendix ITI. Akhmim Wooden Tablet (AWT) and the Rhind
Mathematical Papyrus(RMP)

The AWT was written in 1925 BCE. The text was transliterated in 1906 (Daressy 1906).
An improved transliteration was published in 2002 (Vymazalova 2002). One hekat was
scaled by 1/3, 1/7, 1/10, 1/10, and 1/13 to strings of binary quotients and remainders
that were returned to a hekat unity written as (64/64). The Rhind Mathematical Papyrus
(RMP), a 1650 BCE text, used a related quotient and remainder method over 60 times
(Gardner 2006). The binary quotients plus scaled 1/320 of a hekat(ro) remainder was
first reported to the modern era by the Akhmim Wooden Tablet (AWT). The scaled ro
remainder was implicitly amended by Ahmes, in his own shorthand notes, to include 2-ro,
3-ro, and 4-ro remainders in RMP 47 (Gardner 2011).

Early in the 20th century, Ahmes bird-feeding problem (RMP 83) was re- ported by
unclear additive patterns (Chace et al. 1927). Ahmes listed seven grain (hekat) portions
within the AWTSs hekat unity (64/64) divided by divisor n quotient and scaled remainder
pattern, asking how much grain did the seven birds eat in one day, and how much did all
the birds eat in 1, 10, 20, and 30 days. Corrected AWT quotient and remainder patterns
report RMP 83 by:

1. 2 geese and a crane each ate (1/8 4+ 1/32 hekat + (3 + 1/3) ro

2. a set-duck ate (1/32 + 1/64) hekat + 1 ro, and

3. a set-goose, dove, and quail each ate (1/64) hekat + 3 ro

Ahmes reported seven portions of grain recorded within a hekat unity (64/64) a scribal
context was misunderstood by scholars such as Peet (1923), Chace et al. (1927), Clagett
(1999), Gillings (1982), Neugebauer (1962), Pommerening (2002), and Robins (1987).
Ahmes reported 1/6 of a hekat (three times), 1/20 of a hekat (once), and

1/40 of a hekat (three times such that:

(3/6 + 1/20 + 3/40) hekat

(20/40 + 2/40 + 3/40) hekat

(25/40 = 5/8) of a hekat (of grain)

was eaten by seven birds in one day.

Vulgar fractions were scaled by LCMs and red auxiliary numbers before unit fraction
answers (Gardner 2008a).The bird feeding method was extended to wage valuations by
pesu and other methods (Gardner 2008c).
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Abstract : In this paper we give a proof of that if X is a topological space and
f X xR — R is a map such that for each x € X, the map f, : R® — R™ given
by fx(v) = f(x,v) is a linear transformation, then f continuous if and only if the
map f : X — L(R™,R™) defined by f(x) = f, is continuous. Also we give a proof
of that if X is a topological space and f : X x R®™ — R" is a map such that for
each z € X, the map f, : R®™ — R" given by f.(v) = f(z,v) is a linear isomorphism
and Y is a topological space with a homeomorphism g : X — Y, then the map
h: X xR" =Y xR” given by h(z,v) = (g(x), f(z,v)) is homeomorphism if and only
if f is continuous.

Keywords : topological space, continuous map, linear transformation.
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1 Introduction

We know that (see [1],[2] and [4]) the set of all mn real matrices My, x»(R) and set of all linear
transformations L(R™, R™) from R™ to R™ are smooth manifolds whose smooth structures are
obtained by identifying with the Euclidean space R™*™ and the general linear group GL(n,R) the
set of invertible n X n real matrices and the set of non-singular linear transformations Aut(R™)
are also smooth manifolds being the open subsets of My, (R) and End(R™) respectively. If G
is a matrix Lie group then a finite dimensional real presentation of G is given by a smooth map
g: G —= GL(n,R) = Aut(R™) which is also a group homomorphism for some positive integer n (See
[2], [4], [3] and [5]). This gives raise to a smooth map f : GxR"™ — R" given by f(z,v) = (g(x))(v).
Conversely if f : G x R™ — R" is a smooth map such that for each x € M, the map f, : R* —» R"
given by f.(v) = f(z,v) for all v € R" is a linear isomorphism then the map g : G — Aut(R"™)
given by g(x) = f, is a finite dimensional real presentation of G if g is a homomorphism. In
this paper we consider an arbitrary topological space X instead of a Lie group G and L(R",R™)
instead of Aut(R™) and study the continuity properties of f and g.
We start with the following proposition:

Proposition 1.1. Let X be a topological space and f : X x R™ — R™ be a map such that for
each x € X, the map f, : R® — R™ given by f,(v) = f(z,v) is a linear transformation. Then f is
continuous if and only if the map f: X — L(R™,R™) defined by f(x) = f, is continuous.

Proof. Let E,, = (e1,--- ,ep) and E,, = (e1, -, em) be the standard ordered base of R™ and R™
respectively. Let g be the map from L(R™,R™) to M,,xn»(R) which maps to each linear transfor-
mation T € L(R™,R™), the m X n matrix m[T] of T with respect to the base E1, E» and h be
the map from M, x»(R) to R,,xn which maps to each m x n matrix A = (aij), the m x n tuple

((11171121,"' yAmly = ; Aln,y
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A2ny " 5 Gmn) N Ry xn. For each - €, the matrix of the linear transformation f, with respect to
the base F1, F» has the form

f1($,€1) fl(xaen)

fm(xvel) fm(xven)
and image of this matrix under h is
(fl(wa el)a T af’m(-ra el)a T ;fl(wa €n), T af’m('ra en)) = (f(xa el)a T af('ra en)) in R™*"
Suppose f is continuous. Then for i = 1,--- | n the function k; : X — R™ given by k;(z) = f(z,e;)
is continuous as it is the composition of the inclusion X — X x {e;} and the restriction of
f on X x {e;}. From this we see that the map hogof : X x R™" is continuous as (h 0 g o
@) = (ki(x), -+ ,kn(z)). Since g and h are homeomorphism we get that f : X — L(R" R™) is

continuous map.
Conversely suppose f : X — L(R™ R™) is continuous map. Then k; : X — R™ is continuous

fori=1,--- ,nashogof is continuous map. Now for (z,v) € X xR"™, we have f(z,v) = f.(v) =
fo (Ol vies) = D0 vifaler) = S vif(z,e;) = Yi viki(x) which is a sum of continuous
map. Therefore f: X x R™ — R™ is a continuous map. o

As an corollary we have :

Corollary 1.1. If g : X — R™ is a continuous map and 7T : R®™ — R™ is a linear transformation,
then the map h : X — L(R™, R), where h(z) : R™ — R as the dot product in R™ is distributive over
addition. So h is well defined map and h = f where f : X xR"™ — R is given by f(z,v) = g(z)-T'(v),
for each z € X, f,, : R"® — R given by f,(v) = f(z,v) and f(x) = fz. Since f is the composition of
the continuous maps T Rm « R™ 5 R by the above proposition we see that h is continuous.

Similarly as R x R™ — R™ multiplication of a vector by a scalar and the cross product
R3 x R3R? are continuous maps, we also have the following corollaries:

Corollary 1.2. If g : X — R is a continuous map and 7 : R™ — R™ is a linear transformation
then the map h : X — L(R™,R™), where h(z) : R” — R™ is the linear transformation given by
h(z)(v) = g(x)T (v), is continuous.

Corollary 1.3.If g : X — R? is a continuous map and T : R® — R? is a linear transformation
then the map h : X — L(R" R3), where h(z) : R® — R3 is the linear transformation given by
h(z)(v) = g(x) x T(v), is continuous.

Another corollary which follows from the above proposition is :

Corollary 1.4. If f: RP x R? — R™ is a bilinear map then f is continuous.

Proof. Since f is linear on the second component, the map f :R? — L(R?, R™) given by f(v) = fu,
where f,(w) = f(v,w), is well defined. Again since f is linear on the first component, f is a linear
transformation and so it is continuous. Therefore f is continuous. O

Corollary 1.5. Let X be a topological space and f : X x R™ — R” be a map such that for each
x € X, the map f, : R®* — R™ given by f,(v) = f(z,v) is a linear isomorphism. Let Y be a
topological space and g : X — Y be a homeomorphism. Then the map h: X x R* — Y x R"
given by h(z,v) = (g(z), f(z,v)) is homeomorphism if and only if f is continuous.

Proof. By the (1.1), we know that f is continuous if and only the map fiX— L(R™,R™) defined
by f (x) = fy is continuous. Therefore h is continuous if and only f is continuous. To check
that h is one to one, let (z1,v1) and (z2,v2) be two elements of X x R™ such that h(z1,v1) =
h(x2,v2). Then we have g(x1) = g(x2) and f(z1,v1) = f(x2,v2). Since g is one to one, we get
x1 = x2. Now f(z1,v1) = f(x1,v2) implies that f;, (v1) = fg, (v2). Since fy, is an isomorphism,
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we have v; = vy. To check that h is onto, let (y,w) be an element of Y x R™. Since g is onto,
there exists an element = of X such that g(x) = y. Again since f, is onto, there exists v € R"
such that f,(v) = w ie. f(z,v) = w. So we have h(z,v) = (y,w) and hence h is bijective

and hl(y,w) = (¢'(y), (fg'(y))'(w)). We notice here that the second component of h' is the

composition of the maps ¥ x R™ EELICENG'NS - LI - CRE k(z,w) = f;7 (w) and for x € X,

the map k, : R® — R". given by k;(w) = k(z,w) is an element of Aut(R™) as k, = f, ! . So
again by the (1.1) we see that k is continuous if and only if the map k:X — Aut(R”) given by
k(z) = kg is continuous. But k is the composition of the maps X ER Aut(R”) LN Aut(R™), where
[ is the inversion map. As [ is continuous, k is continous if and only if f is and so h! is continuous
if and only if f is. Therefore h is homeomorphism if and only if f is continuous. O

Proposition 1.2. Let g : R” x R" — R be a bilinear form such that for v = (v, - ,v,) #
0,g(v,w) =0 for all w € R"{0}. Then the map h : (R"{0}) x R — (L(R",R){0}) x R™ given by

h(va w) = (gva (Ulg(elaw)’ T avng(e’m w)))

is a homeomorphism, where ey, - - - , e, is the standard ordered basis of R™ and g, : R™ — R is the
linear transformation given by g, (w) = g(v, w).

Proof. Since g is bilinear, the map § : R® — L(R"™, R)givenbyj(v) = g, where g,(w) = g(v,w) is
linear transformation and g(v) = 0 implies that v = 0. So § is one to one. As the dimensions of
R™ and L(R™,R) are same, we see that § is a homeomorphism.

Let f: (R™{0}) x R" — R" be defined by

f(?), ’LU) = (Ulg(ela ’LU), T ,vng(en,w)),

where eq, - -, e, is the standard ordered basis of R” and v = (vy,--- ,v,). Clearly f is continuous
as ¢ is continuous. Again since g is bilinear, for v € R™, the map f, : R™ — R™ given by
fo(w) = f(v,w) is a linear transformation. Let w be an element of R™ such that f,(w) = 0. This
implies that v1g(e1,w) = -+ = v, g(e,, w) = 0. This gives us that vig(e1,w)+- - +vpg(e,, w) = 0.
Since g is bilinear we have g(vie; + -+ + vpen, w) = 0 which gives us that g(v,w) = 0. Since
v # 0, by the hypothesis we should have w = 0. This shows that f, is one to one and also onto
by the dimension property. So by the Proposition [6] the map (R"{0}) x R" — (L(R™,R){0}) x
R", (v,w) = (g, f(v,w)) is a homeomorphism hence we complete the proof. O

As a corollary we have:

Corollary 1.6. Let f : R x R — R be a non degenerate bilinear form. Then the map h :
(R{0}) x R — (L(R,R){0}) x R given by h(v,w) = (fu, f(v,w)) is a homeomorphism, where
fv : R = R is the linear transformation given by f,(w) = f(v, w).
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Abstract : In the historical mathematical texts like the Rhind Papyrus, Sulbha
Siitra or Bhaskara’s Lilavati, we see that the problems are posed in lively, engaging
and possibly lyrical manner. This is in stark contrast to the seemingly dogmatic
abstractions, structured methods and procedures that Mathematics education has
been commonly reduced to today. In the core subjects of engineering, the biography
and anecdotes of the scientists have been used to enhance the effectiveness of teaching.
In modern subjects like software engineering, it is partly the personality cult associated
with pioneers that grabs the attention of the student.

Recent advances in ethnomathematics and the historical research into the lives of the
mathematicians offer a wonderful opportunity to enrich mathematics education.
Such a humanized approach can also serve to highlight the contributions of local
historical genius like the Kerala School of Mathematics. Popularizing such historical
information by their inclusion in the curriculum will make it easier for the students to
personalize and associate with the imparted knowledge and that in turn can fan the
innovative spirit in the young minds.

1 Introduction
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Figure 1: A portion of the Rhind mathematical papyrus. Image Courtesy: Wikipedia

When the Rhind Papyrus (1650 BC) was brought to light in 1858 by antiquarian Alexander
Henry Rhind, the modern world got the first glimpse of how mathematics was taught in the ancient
world. In the Egyptian civilization, the stress was on practical problems that directly concerned
the civil governance of the kingdom. Similarly the Sulab Sitras in India list problems meant to
convey various mathematical concepts to students. However in the Indian texts, imaginary and
animalistic scenarios are invoked to create mathematics problems. A classic example is the owl
and mouse problem that reduces to the calculation of a chord length.

A quick perusal of textbooks and question papers at the school and university levels today
quickly demonstrates that fiction has all but disappeared. Nietzche said, “No more fiction for
us; we calculate; but that we may calculate, we had to make fiction first.” Mathematics and its
problems are presented to student community in a language of symbols with concern for abstract
formulations and equations. As variables and functions dominate, the connection with the real
world is thinned.

Recent survey shows that among the three vital Rs for education namely Reading, wRiting
and aRithmetic, students both in India and the United States perform mostly disappointingly in
arithmetic. The recently unveiled PISA report spread over 74 countries including the Plus nations
(10 countries were added to the original 64), the two Indian states (Tamil Nadu & Himachal
Pradesh) came up 72nd and 73rd out of 74 in both reading and mathematics. The latest set of
results from the 2012 data collection (PISA 2012) focusing on mathematics will be released in
December 2013.

Percentage of students in the class of 2011 at the proficient level in math in U S. states and foreign
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Figure 2 : Mathematics proficiency 2011, Globally Challenged: Are U.S. Students Ready to Com-
pete?, Harvard University’s Program on Education Policy and Governance (PEPG), 2011. Image
Courtesy: www.asianscientist.com

It is obvious that we lose plenty of potential mathematicians and engineers by the time they
get to higher education. Human beings have a natural ability to count. At school this skill is
horned but rapidly gives way to a capacity to follow step by step procedure. It can be argued that
such adherence to method reduces the ability for mathematical thinking and modeling which are
the essential ingredients of the engineering mind.

2 ‘Real’ Mathematics

Tobias Dantzig’s classic text: Number that fascinated Einstein defines Number as the language
of science in the subtitle itself. In the case of engineering education, mathematical fluency is
imperative. An engineering graduate must be bilingual in this sense. He or she needs to seamlessly
be able to look at the world and communicate with each other in the language of mathematics.
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But the falling standards of education states that the case is otherwise. What makes it difficult for
mathematics to be the “underlying” language of other entire engineering subjects just as English is
the language in which Economics is taught? What factors in the higher education system prevent
such deep penetration and imbibing?

In the 2008 scheme of Kerala University, the first sections that first year students encounter are
conic sections and matrices. The powerful nature of these fields when it comes to real world appli-
cation is left to the keenness of the student. The problems posed in the university question papers
do not invoke any real world applications but are symbolic manipulations. An analysis of AICTE-
CII Survey of Industry-Linked Technical Institutes 2013 shows only 1% of technical institutes do
consultancy work or research projects for industry. This scenario creates an unbridgeable gap in
the minds of the fresh graduates. Constant exposure to tangible, immediate problems is a must to
create both an appreciation for the powerful nature of the tools learnt as well as readiness to take
up challenging realistic situations that can be mathematically reduced to solutions.

As mentioned earlier, the tendency to present mathematics as an abstraction abounds. Budding
engineers are taught existing methods and techniques with scant attention to enhance their ability
to approach the world mathematically. It is often developed as a subject consolidating techniques.
The strong underlying usefulness and universality is never brought forth or glossed over.

Figure 3 : Page from Lilavati showing illustration of Pythagoras theorem. Image Courtesy: Math-
ematical Association of America.

Stark contrast can be found in the way Bhaskaracharya poses problems in his legendary work
titled Lilavati (Playful One). The work was a main source of learning the then state-of-the-
art arithmetic and algebra. The work had immense influence in the Middle-East and that a
translation was rendered by Abul Fazal, a vizier of the Mughal emperor Akbar. The 12! century
mathematician Bhaskara wrote the text to immortalize his daughter, named Lilavati, after she was
distraught about missing the auspicious hour for wedding.

A couple of examples from the work will illustrate how poetically close to life the posing of
problems were :

(a) Whilst making love a necklace broke.
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A row of pearls mislaid.

One sixth fell to the floor.

One fifth upon the bed.

The young woman saved one third of them.
One tenth were caught by her lover.

If six pearls remained upon the string

How many pearls were there altogether?
And

(b) In a lake swarming with geese and cranes,
the tip of a bud of lotus was seen one span above the water.
Assaulted by the wind, it moved slowly,
and was submerged at a distance of two cubits.
O mathematician, find quickly the depth of the water.

3 A Computational Paradigm

We live in a rapidly digitizing world. Our mental realm has become more or less digital more
than we may like to give credit to. Mutual appreciation in the Facebook era is measured as the
number of ‘likes’ and in the number of comments. Movie reviews are summed up in number of
stars or percentage of rottenness. We have become comfortable with objective numbers rather than
subjective statements in many areas of life. Memory, bandwidth, encoding etc are all mathematical
concepts pervade our personal and professional life.

Government of India has embarked on the ambitious project to bring cheap computational
power to its billions. The government is going ahead with plans for a new and improved low-cost
Aakash tablet for students to be priced under $25 (Rs.1,500). The aim of the Aakash project was
to link 25000 colleges and 400 universities through e-learning. IT@ School initiative of the Kerala
government remodeled teaching learning techniques through the use of information technology.

Computers are fundamentally computational tools. Mathematics is the core language in which
they operate and can be used. As more power software become available to students at younger
stages, it becomes imperative for them to reduce problems into software compatible format.

But it appears that the increasing mathematisation of life is coupled with an increasing alien-
ation of the subject in the curriculum format from life. ‘Mathematical Anxiety’ is a genuine
problem. Even as mathematics pervades every sphere of modern life, the population comfortable
in applying valuable mathematical concepts is shrinking.

There is an unfortunate effect of students questioning the usefulness of mathematics prema-
turely. Unless the reality of mathematics is conveyed continuously, students will not appreciate
its beauty. It is imperative that the language of mathematics that has led to all the technological
advancement ingrains itself as something much more fundamental to the human mind than just
another subject that is open to being loved or hated in school.

The interest aroused in the students will definitely improve with vigorous treatment that links
the techniques immediately with real relevant engineering problems is established right from the
beginning. We can see that this is in sharp contrast with how computer languages like C++ are
taught. The students learn by writing programs that solve actual problems. Those problems might
be mathematical. So here C++ becomes the computational language that can solve a mathematical
problem. If we take it one step higher by making mathematics the language to solve engineering
problems, the effectiveness would be enhanced. The students in a C4++ class are trained to reduce
any problem into that particular language.

Similarly all engineers must inculcate an ability to reduce any engineering problem into a
mathematical language. Thus mathematics can progress through three stages. It can start off as
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one of the subjects of the core curriculum. In the second stage, it must become a powerful tool
that can help solve several real world problems. In the third, it should transform into a language,
fluency in which allows the student to view the world in a clear perspective.

To further illustrate the idea, we can consider category theory that can be applied throughout
science to create qualitative models. Once such a qualitative model is formed as a category, its
basic structure can be meaningfully compared with that of any other category, be it mathematical,
linguistic, or other. Like a biological system, the basic building blocks of a category are simple, but
the networks that can be formed out of them are as complex as mathematics itself. If we compare
logic and set theory to the “machine language” of computers, we can regard category theory as an
extremely useful universal programming tool.

Category theory is the theory of structure-preserving transformations. This theory provides
us with a language for describing complex problems in an elegant way, and tools to give elegant,
and above all simple, proofs. The language of category theory allows us to consider the essence of
some problem, without the burden of /often numerous and complicated/ non-essential aspects.

4 An “Ethnomathematical” Route

Walter Fisher’s Narrative paradigm of communication theory puts forth that all meaningful com-
munication is a form of storytelling. It is worthwhile to examine whether the near total absence
of stories in a mathematical classroom causes the disconnect the subject tends to have in young
minds. Affirming mathematical techniques using real world framing of problems, as done in the
ancient and classic texts, is a method to bring some narrative element back into the classroom.

Another effective method would be the use of rich stories from the history of mathematics and
ethnomathematics. History of mathematics is full of captivating characters and events that can
provide a fertile framework and colorful backdrop through which different topics can be introduced.

Niccoloa Fontana, known as Tartaglia (the stammerer) left the method he had devised to solve
cubic equation in his rival, Cardano’s house in the form of an Italian poem. The mention of the
rather intriguing origins of L’Hospital’s rule that is taught in undergraduate program will help
with exploration and memorization of the technique. The case of amateur Marquis de L’Hospital
“freely” borrowing from Johann Bernaulli and Leibnitz is surely a story that can create interest
in a classroom.

Periodically, there are serious discussions about the unfounded bias across the world that
turns girls away from mathematics. Perhaps, active introduction of the stellar contributions of the
female mathematicians like Sophie Germain, Ada Lovelace, Sofia Kovalevskaya, Emmy Noether et
al can help female engineers get more involved. The study of the lives, struggles, disappointments
and successes of the mathematicians can help the students become more comfortable with their
own insecurities and errors in the subject matter rather than the feel of the subject as a cold,
unforgiving, lifeless abstraction.

Much closer to home, in Kerala, the ‘Katapayadi’ system attributed to Vararuchi in 4" century,
sparkles with wit and creativity as it transforms mathematical formula, equations, lists and figures
into metrical poetry in Sanskrit and Malayalam that serve as memory aides. A brilliant example
being “Ayur Arogya Soukhyam”, the closing blessing in Melpathoor’s devotional masterpiece,
Narayaneeyam, that via Kadapayadi system actually captures the date of finishing the composition
of the work.

Harking back to the greatest interest with which computer education has penetrated the sys-
tem, it can be seen that personality cult plays a significant part in student motivation. The business
successes of Bill Gates, Steve Jobs, Sergei Brin, Larry Page et al go a long way in generating and
sustaining the attraction of the field. Even in other subjects, we know that exemplary teachers
have sparked lifelong interest in students like Feynman in physics. With the help of Youtube today
it is possible for students anywhere in the world to have access to the best of the teachers and
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practitioners of any field. The internet has truly ‘localised’ all fame.

Mining the history of mathematics makes it amply clear that there is no dearth of colorful
personalities as well as captivating teachers in the field of mathematics. The huge success of some
of the massively open online courses (MOOCSs) in mathematics through websites like Courseragshow
how much influence a great professor can have on the popularity of a field.

While ethnomathematics can serve to increase the sense of close association, care must be
taken of the criticism that going overboard with the local pride can only lead to proliferation of
pseudoscience without rigorous testing and experimentation.

5 Conclusion

The diminishing mathematical ability among students of school and higher education raises alarm.
The lack of interest in the subject could be attributed to the non-narrative, abstract way it is
presented most of the time. Using the paradigm of computer languages, it might be possible to
introduce mathematics as a powerful tool as well as language to navigate the real world. Also,
adding a healthy dose of storytelling element to the subject based on its history as well as the
involved personalities could create deeper impact in a classroom.

6 References and Suggested Reading

References

[1] Neil McGregor, A history of the World in 100 Objects, Penguin Books, 2013

[2] Chandra Banerji Haran, Lilavati — Colebrooke’s Translation with Notes, Asian Educational
Services, 2000

[3] Victor J Katz, The Mathematics of Egypt, Mesopotamia, China, India and Islam: A Source
Book, Princeton University Press, 2007

=

PISA 2012, OECD, Program for International Student Assessment, 2012

<

Globally Challenged: Are U.S. Students Ready to Compete?, Harvard University’s Program
on Education Policy and Governance (PEPG), 2011

=)

Tobias Dantzig, Number: the language of Science, Plume, 2007

EN|

Theoni Pappas, Mathematical Scandals, World Wide Publishing, 1997

Eli Maor, e The story of a number, Princeton University Press, 2009

EONRCIRNES NEN

©

George Gheevarghese Joseph, The Crest of the Peacock: Non-European roots of Mathematics,
Princeton University Press, 2010

[10] George Gheevarghese Joseph, A Passage to Infinity: Medieval Indian Mathematics from Ker-
ala and Its Impact, SAGE publications pvt limited, 2009

[11] http://www.storyofmathematics.com/index.html

[12] Walter R Fisher, The Narrative Paradigm: an elaboration, Communication Monographs, Vol
52, Issue 4, 1985

[13] Ashcraft, M.H. (2002). Math anxiety: Personal, educational, and cognitive consequences.
Directions in Psychological Science, 11, 181-185.

[14] Ziauddin Sardar, Jerry Ravetz, Bordin Van Loon, Introducing Mathematics, Icon Books, 2005

[15] Mac Lane, S., Categories for the working mathematician. 1998, New York: Springer

172



[16] S. Mac Lane. Mathematical models: A sketch for the philosophy of mathematics.American
Mathematical Monthly, Vol 88, Issue 7,462-472, 1981.

173



Proceedings, ICMET’ 13 (17-20 Dec 2013)

On ring of d-continuous and J-perfectly

continuous functions

Sanghita Dutta

Dept. of Mathematics
NEHU Campus, Shillong.

sanghita22@gmail.com

Abstract : The notion of §-continuous function was introduced by T. Noiri and the
notion of d-perfectly continuous function was introduced by Kohli and Singh. In this
note we show that if X and X x X has almost partition topology then the space of
all real valued d-continuous functions on X from a ring under the point wise addition
and multiplication and if X and X x X have J- partition topology then the space of
all real valued d-perfectly continuous functions on X from a ring under the point wise
addition and multiplication.
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1 Introduction

Several weak, strong and other variants of continuity occur in mathematics literature. The classes
of discontinuous functions possess interesting properties. A lot of work has been done recently on
dynamical systems generated by discontinuous functions. Even simpler operations lead one out of
the class. In this note we try to see under what condition the classes of all real valued §-continuous
functions and the classes of all §-perfectly continuous functions on a topological space X form a
ring under the pointwise addition and multiplication. The notion of d-continuous function has been
introduced by T. Noiri [2] and the notion of §-perfectly continuous function has been introduced
by Kohli and Singh [1].

Let X,Y be topological spaces and f : X — Y be a single valued function. A subset A of
X is said to be regular open if A = int(cl(A)) and regular closed if X is regular open. A subset
A of a space X is said to be d-open if it is union of regular open sets. A function f: X — Y is
d-continuous if for each regular open set V in Y, f}(V) is a clopen set in X and f : X — Y is
d -perfectly continuous if for each d-open set V in Y, f}(V) is a clopen set in X. The notion of
d-perfectly continuous functions in general are independent of continuous functions but coincide
with perfect continuity if Y is a semiregular space.

2  On ring of d-continuous functions

Proposition 2.1. Let f: X — Y be continuous and g : Y — Z J-perfectly continuous. Then gof
is d-perfectly continuous.

Proof. Let W be 6-open in Z. Since g is d-perfectly continuous g=1(W) is clopen in Y. As f
is continuous, f~1(g71(W)) = (gof)~L(W) is clopen in X. Hence, gof is d-perfectly continuous
function.
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Definition 2.1. A space X is said to be endowed with a d-partition topology if every d-open set
in X is closed.

Proposition 2.2. Let X be a topological space and X x X has §-partition topology. If f: X — Y
and g : X — Z are §-perfectly continuous, then (f,g) : X x X = Y x Z is §-perfectly continuous.

Proof. Let A be regular open in y x Z. Then A = UU; x V; where Uj; is regular open in Y and V;
is regular open in Z. So, (f,g) 1 (A) = U(f,9) " (U; x V;) = Uf~1(U;) x g=1(V;).

Since f and g are §-continuous and U;, V; are regular open, f~1(U;) and g—*(V;) are clopen. So,
(f,9)"1(A) is regular open in X x X and since X x X has almost partition topology, (f,g)~1(A)
is closed. Also, (f,g)"*(A) is open. Hence, (f,g) is §-continuous. O

Proposition 2.3. Let X and X x X have almost partition topology. Then the classes of all real
valued continuous functions D(X,R) is a ring.

Proof. Let h: R x RtoR denote either of the functions h(x,y) =  +y or h(z,y) = zy.
Let U be a regular open set. Then U is open in R. Since h is continuous,h~1(U) is open in
R x R. Any open set in R x R is union of product of basic open subsets of R. So, h=}(U) =
UU; x V;. Since basic open subsets in R are regular open, h~1(U) is regular open in R x R. Now let
f,g9: X — R be §-continuous. By proposition (2.2) (f,g) is é-continuous and so (f,g)"th=1(U)
is clopen in X x X. If d : X — X x X is the diagonal map then (f + ¢g)~*(U) or (fg)~1(U)
is d=Y((f,9)"th=1)(U) = U(f~Y(U;) N g~ 1(Vi)) which is clopen in X as X has almost partition
topology.
O

3 On ring of )-perfectly continuous functions

Proposition 3.1. Let f: X — Y be continuous and g : Y — Z §-perfectly continuous. Then gof
is d-perfectly continuous.

Proof. Let W be é-open in Z. Since g is d-perfectly continuous g=1(W) is clopen in Y. As f
is continuous, f~1(g~Y(W)) = (gof)~1(W) is clopen in X. Hence, gof is §-perfectly continuous
function. 0

Definition 3.1. A space X is said to be endowed with a d-partition topology if every d-open set
in X is closed.

Proposition 3.2. Let X be a topological space and X x X has d-partition topology. If f: X = Y
and g : X — Z are §-perfectly continuous, then (f,g) : X x X = Y x Z is §-perfectly continuous.

Proof. Let A be d-open in Y x Z. Then A = UU; x V; where U; x V; is regular open in Y x Z.
Then U; is regular open in Y and V; is regular open in Z. So, (f,9) 1 (A) = U(f,9) Y (U; x Vi) =
Uf=YU;) x g~ 1(Vi).

Since f and g are d-perfectly continuous and U;, V; are d-open, f~1(U;) and g=1(V;) are clopen.
So, (f,9)"1(A) is 6-open in X x X and since X x X has d-partition topology, (f,g)~1(A) is closed.
Also, (f,g)~(A) is open. Hence, (f,g) is d-perfectly continuous. O

Proposition 3.3. Let X and X x X have J-partition topology. Then the classes of all real valued
d-perfectly continuous functions P(X,R) is a ring.
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Proof. Let h: R x R — R denote either of the functions h(z,y) =« + y or h(z,y) = xy.

Let U be a §-open set. Then U is open in R. Since h is continuous, h=1(U) is open in R x R.
Any open set in R x R is union of product of basic open subsets of R. So, h=1(U) = UU; x
V;. Since basic open subsets in R are regular open, h=1(U) is d-open in R x R. Now let f, g :
X — R be d-perfectly continuous. By proposition (3.2), (f,g) is d-perfectly continuous and so
(f,g)"th=1(U) is clopen in X x X. If d: X — X x X is the diagonal map then (f + g)~}(U) or
(f) X (U)isd Y ((f,g9) " th=1)(U) = U(f~1(U;)Ng~1(V;)) which is clopen in X as X has §-partition
topology. O

Proposition 3.4. Let X be a topological space. Let f : X — R, R with usual topology, be a
d-perfectly continuous map. then f is continuous.

Proof. Let U be open in R. Then U is d-open as each open set in R is countable union of dis-
joint segments in R and each segment is regular open. Now f~1(U) is clopen as f is J-perfectly
continuous. Hence f is continuous. O

Proposition 3.5. Let X be a space with J-partition topology. If f is continuous then it is J-
perfectly continuous.

Proof. Let U be 6-open. Then U is open and so f~! is open as f is continuous. Again, since U is
d-open and X has d-partition topology, U is closed. Since f is continuous, f~1(U) is closed. Thus
f~1(U) is clopen and hence f is §-perfectly continuous. O

Corollary 3.1. If X and X x X have d-partition topology then P(X,R) = C(X,R).
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Abstract : Mathematics is an abstract subject and students find it difficult to com-
prehend. There are more failures in Mathematics than in any other subject. An annual
national survey in 2012 called the “Annual Status of Education Report” revealed that

the students from Maharashtra are the weakest in Mathematics in the country. It
was found that 77.4% of fifth standard students couldn’t do simple problems taught
in third standard. Hence this study was conducted in Maharashtra to analyze the
causes of poor performance in Mathematics. In schools there are students found to

be isolated with very less interaction with peers, their parents and teachers. They

appear to be unhappy, tense, nervous, frustrated, operate independently, quiet, sober,
easily discouraged, abandon tasks if it is difficult, do not initiate or volunteer and are

mostly employed in day dreaming. Some of them are poor in numerical ability and

hence they are weak in Mathematics. The purpose of this study was to examine the

correlation between numerical ability and math scores of isolated students of eighth

standard. It was found that home isolation and home rejection are the major causes

for poor numerical ability. Parents need to take a proactive role in the education

of their children. Computer Assisted Instruction can be a supplement for these stu-

dents. With the parents’ involvement a mathematics teacher can change the behavior

of isolated students and can bring them to the main stream of society.

Key words : Numerical ability, isolated students, Computer Assisted Instruction

1 INTRODUCTION

The French philosopher and mathematician Ren Descartes (1596-1650) said “Mathematics is a

more powerful instrument of knowledge than any other that has been bequeathed to us by human

agency.” Mathematics is the oldest of all sciences that has been developed through the ages of

mankind. Mathematics originated with number system which is also the base for every mathe-

matical concept. Mathematics is an abstract subject and symbols occupy an important position.

Numerical ability influences pupils’ achievement in Mathematics. A significant number of students
find it difficult to comprehend the symbols and so find it difficult to learn Mathematics and there
are more failures than in any other subject. [1] It is a subject most feared by students of primary
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school and secondary school levels. There is an increasing concern about the number of learners
who drop mathematics in the later years of high school. Mathematics is used as an essential tool
in many fields including Natural Science, Engineering, Medicine, Information Technology, Astron-
omy and Social Science. In today’s world, it is important that children grow to become confident
in their ability to do Mathematics in this modern high-tech competitive society.[2]Understanding
numbers and mathematics is so critical that a deficit in basic mathematical abilities has been found
to have greater negative effect on employment opportunities than reading difficulties. In spite of
this there is not only a lack of awareness about the indispensability of mathematics but instead
there is a tendency to ignore mathematics. Many students avoid studies that involve Mathematics
in their higher education. [3]Avoidance of Mathematics leads to a limit of career choices, eroding
a country’s resource base in science and technology.

[4]For many students passing examinations to secure certificates either for admission into in-
stitutions of higher learning or to secure a good job is the main goal of education and not the
acquisition of knowledge and skills through studying. [5]The National Policy of Education (1986)
suggested that Mathematics should be visualized as the vehicle to train a child to think, reason,
analyze and to articulate logically. [6]The National Curriculum Framework (NCF) 2005 proposes
that the aim of mathematics teaching and learning is mathematisation of a child’s thought pro-
cesses instead of mathematics learning being loaded with content. Emphasis is to learn meaningful
Mathematics and to focus on developing the inner resources of the child to bring clarity of thought
while pursing logical conclusions with an ability to handle abstractions.

According to [7] the characteristics of mathematics are: It is the science of numbers and space,
it is the science of calculation, it is the science of measurement, quantity and magnitude, it deals
with quantitative facts and relationships, it is the abstract form of Science, it is the science of
logical reasoning. [8] School mathematics today takes place in a situation where: children learn
to enjoy Mathematics, children learn important Mathematics, Mathematics is a part of children’s
life experience which they talk about, children pose and solve meaningful problems, children use
abstractions to perceive relationships and structure, children understand the basic structure of
Mathematics and teachers expect to engage every child in class.

2 RATIONALE OF THE STUDY

[9] “Modern nations see value in building a mathematically literate society and hope for a strong
mathematical elite that can shape the knowledge economy of the 21st century. At the same time,
mathematical proficiency is universally considered hard to achieve. India, with its strong mathe-
matical traditions, may be expected by the world to produce excellence in mathematics”. But the
[10] Annual Status of Education Report (2012) has disturbingly revealed that basic arithmetic
skills of students are declining. In its national survey among school-going children’s ability in
Mathematics, it was found that at the national level 75.2% of the students from fifth standard
could not do problems taught in third standard and students from Maharashtra are the weakest
in the country with 77.4% students unable to solve mathematical problems. Such astounding facts
led to this study.

Isolated Students

All children need a connection with their peers but some students are alienated from others. [11]Tt
refers to a sense of social estrangement and absence of social support. Within the context of school,
alienation is related to the negative student behaviors such as self-isolation, failure, absenteeism,
and drop outs. [12]To be alienated is to lack a sense of belonging and to feel cut off from the family,
friends and school. [13Those who are rejected by their peers have a two to eight times greater
chance of dropping out of school. [14]Failure in school often stems from feeling disconnected from
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the teacher, other students, or the school community at large. Social isolation, according to [15] is
the feeling of loneliness, even when in the company of others, due to a lack of meaningful, intimate
relationships with peers, family, and the wider community. Students who feel isolated tend to be
separated from mainstream groups, feel a lack of connection to others, and feel no one cares or
pays attention to them. Even if a child is enjoying academic success in the classroom, his attitude
to school will be determined by the degree of social success that he experiences. The children who
feel isolated from their peers tend to have increasing social and academic problems especially in
Mathematics.

Hypothesis

The null hypothesis for this study was:
Hy : There is no correlation between numerical ability and achievement in Mathematics among
isolated students of eighth standard students.

Sampling Method and Participants

Two schools each from rural, urban and metro areas of Maharashtra were selected randomly. 910
students of eight standard participated in the survey and by sociometric method 223 were found
to be socially isolated students. The isolated students were selected for this study along with their
parents and Mathematics teachers.

Instruments

[16]Sociometry, [17] Mathematics Anxiety Scale-India, [18] Students Liking Scale, [19] Home En-
vironment Inventory, [20] Parent Involvement Scale and [21] Teachers’ Attitude Scale towards
Teaching and Teacher Student Relationship questionnaires were used for this study.

The study investigates the numerical ability of isolated students of eighth standard towards
Mathematics and their achievements in Mathematics. Despite its importance, Mathematics seemed
to be an unpopular subject among most students. Several dimensions of attitudes were consid-
ered. They are: Numerical ability, Home-isolation, Home-rejection, Student - Teacher understand-
ing, Teacher-Student understanding, Parent-Teacher understanding, Teacher-Parent understand-
ing, Parent-Child at home, Parent-Child about school and Maths Mark.
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Correlation coefficients between the variables

2 2 2 2 g |
.. E E E E 2 | %
z - = & & £ & & £ |2
Numerical ability 1
Home-isolation 0.290 1
Home-rejection 0.321 0.613 1
St.-Tr. understanding | —0.125 | —0.06 | —0.047 1
Tr.-St. understanding | —0.211 -0.3 —0.261 0.047 1
Par-Tr understanding | —0.024 | 0.062 0.043 0.06 0.041 1
Tr-Par understanding | —0.222 | —0.25 —-0.3 —0.008 | 0.378 | —0.103 1
Parent-Child at home | —0.079 | —0.1 | —0.153 0.028 0.072 0.613 —0.001 1
Parent-Child@school —0.108 | —0.18 | —0.247 0.129 0.08 0.549 0.014 0.759 1
Maths Mark —0.541 | —0.22 —0.3 0.209 0.257 | —0.034 0.066 0.033 | 0.065 | 1

The above table indicates there is negative correlation between numerical ability and mathe-
matics achievement and there is positive correlation between numerical ability, home isolation and
home rejection. Also the correlation between numerical ability and other variables are negative.
Hence null hypothesis is rejected and it is concluded that there is correlation between numerical
ability and mathematics achievement.

3 CONCLUSION

The development of mathematical knowledge is a gradual process. It needs a lot of practice
and understanding; the students who don’t remain in touch with it regularly find it difficult in
examinations which results in fear towards Mathematics. Poor numerical ability is an important
factor for the backwardness in mathematics. Students who are weak in numerical ability have
difficulty in fractions and decimals as well as arithmetic operations which in turn hinders them
from learning algebra. Algebra is considered to be a gateway to higher Mathematics. Hence we can
conclude that a student’s poor numerical ability is the root cause of all his/her problems connected
with Mathematics.

Home isolation and home rejection are the major causes for poor numerical ability. This could
be minimized if teacher-student understanding and teacher-parent understanding are improved
with interaction of the parent and child about school activities.

Computer Assisted Instruction can be a supplement to these students, as it provides wide
range of visuals, graphics and pictures to make learning more interesting. It helps the students
to learn at their own pace and at their own convenience. It enables the students to practice as
many times as they like to achieve the required competencies. It interacts with them by providing
self-evaluation and immediate feedback to the students.

[8]“Our vision of excellent mathematical education is based on the twin premises that all
students can learn Mathematics and that all students need to learn Mathematics.
Curricula that assume student failure are bound to fail; we need to develop curricula that assume
student success. We are at a historic juncture when we wish to guarantee education for all. It
is therefore a historic imperative to offer our children the very highest quality of Mathematics
education possible”
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Abstract :

An examination has been made for the study of steady two-dimensional flow of a vis-
cous and incompressible nanofluid striking at some angle of incidence on a stretching
sheet. Fluid is considered in the influence of transverse magnetic field. The stream
function splits into a Hiemenz and a tangential component. Using similarity vari-
ables, the governing partial differential equations have been transformed into a set
of three nondimensional ordinary differential equations. These equations have been
then solved numerically using Runge-Kutta Fehlberg method. In the present reported
work the effect of striking angle on nanofluid parameters on heat and mass transfer
characteristics have been discussed. The reported results are in good agreement with
the published work in the literature.

Keywords. Nanofluid, stretching sheet, stagnation point flow, magnetic field

1 Introduction

The conventional heat transfer in nanofluid has become a coeval topic of interest in modern times.
The term nanofluid was coined by Choi (see [4]). A nanofluid is a novel class of heat transfer fluids
which comprises a base fluid and nanoparticles. They possess very high thermal conductivity
and unit phase heat transfer coefficient with their base fluids. Nanoparticles have dimension in
the range of 1 to 100 nm in diameter. Nanoparticles used in nanofluids are typically composed
of metals (Al,Cu), oxides (Al2Os3), carbides (SiC), nitrite(AIN,SiN) and carbon nano tubes
(allotrope of carbon nonmetal). Nanoparticles have the intrinsic peoperty of enhancing the thermal
conductivity when mixed with other substrate. Conductive fluids such as water, ethylene glycol,
oil, biofluids and polymer solution can be pondered as base fluid. The thermal conductivity of the
ordinary heat transfer fluids is not adequate enough to apt the cooling rate requirement of modern
industries. Nanofluid coolant exhibiting an ameliorate thermal performance is being considered as
novel technology to secure nuclear safety. Nanoparticle frequently owning up to meager 5 percent
volume fraction of nanoparticles to ensure serviceable heat transfer enhancement. Experimental
study exhibit that even with small volumetric fraction of nanoparticle, the thermal conductivity
of the base fluid is enhanced tremendously by 10-50 percent with a remarkable proficiency in the
convective heat transfer coefficient.

A comprehensive survey of convective transport in nanofluids was fashioned by Buongiorno
(see [3]). He marked that the absolute velocity of the nanoparticle can be assumed as a sum of
velocity of base fluid and the slip velocity (relative velocity). He examined seven slip mechanisms
viz. inertia, Brownian motion, thermophoresis, diffusiophoresis, Magnus effect, fluid drainage and
gravity setting. After proceeding through he concluded that only Brownian motion and ther-
mophoresis are momentus in the absence of turbulence. Buongiorno proposed a new model based
on the mechanics of the nanoparticle / base fluid relative velocity.

182



The flow of an incompressible viscous fluid over a stretching surface is pressing in various
processes. Due to its astounding applications the present field has attracted many researchers in
modern times. Crane (see [5]) examined the application of uniform stress on a two dimensional
steady flow of a viscous and incompressible fluid and concluded that the velocity of the stretching
of the elastic flat sheet vary linearly with the distance from the fixed point. Gupta and Mahapatra
(see [7]) analyzed stagnation point flow towards the stretching surface. They reported in their
research work that a boundary layer is formed when stretching velocity is less than the free stream
velocity. As the stretching velocity surpasses the free stream velocity than an inverted layer is
formed. Singh et. al (see [13]), (see [14]),(see [15]),(see [16]) communicated the effect of magnetic
parameter and radiations on various aspects of the stretching sheet.

The study of magneto hydrodynamic flow of an electrically conducting fluid is of prime interest
in recent metallurgical and metal working process. Magneto hydrodynamic flow is induced by the
deformation of the wall of a vessel containing the fluid. Magnetic nanofluid is a rare material con-
taining both the liquid and magnetic properties. Many of the physical properties can be controlled
by varying the magnetic field. Hamad (see [8]) examined the convective flow and heat transfer of
nanofluid past a semi-infinite vertical stretching sheet in the absence of magnetic field. Bachok
et. al (see [1]), (see [2]), studied the boundary layer stagnation point flow towards a stretching/
shrinking sheet in a nanofluid.

The objective of the present study is to analyze the development of the steady boundary layer
flow, heat transfer over a stretching sheet in oblique flow of a nanofluid. This problem is extension
of Singh et al., (see [13]), [flow model.

2 Mathematical Analysis

The mathematical model considered here consists of a viscous, incompressible, steady two-dimensional
flow of an electrically conducting nanofluid striking at some angle of incidence v on stretching
sheet. Nanofluid is considered in the influence of transverse magnetic field. The stretching sheet
has uniform temperature T, and moving with non-uniform velocity u,, = A,
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Figure 1: Physical picture of the Problem

where A is a positive constants with dimension (time)!. Stretching sheet is placed in the plane
y = 0 and zaxis is taken along the sheet. The fluid occupies the upper half plane i.e. y > 0 as
shown in Figure 1. The viscous dissipation, Joule heating and induced magnetic field are neglected.
The governing equations of conservation of mass, momentum, thermal energy and nanoparticles
under above assumptions are given by (see [9])

ou Ov
e T 2.1
ox * dy 0 (2.1)

ou Ou 1 0p 2u o oB2
u%ﬁLUa—y—*Ea—y‘F’U(W‘Fa—yz)*TU (22)

1 2
u@_’_ av___@_i_v(a’u

Ox Ua_y ~ pbOy

S e (S5 ] R[EEP E]) e

uoo +og = Du (55 + 59) + 1 (55 + ) (25)
where u, v are velocity components along x and y axes, respectively, v is kinematic viscosity, o is
electrical conductivity, T is the temperature, pb is density of the base fluid, p is the fluid pressure, «
is the thermal diffusivity, Dy is the Brownian diffusion coefficient, D; is the thermophoresis diffusion
coefficient and 7 = (pc),/(pc)p is the ratio between the effective heat capacity of the nanoparticle
material and heat capacity of fluid with p being the density, ¢ is the volumetric volume expansion

coefficient. Boundary conditions for the given model are:

U= uy(r)=Az,v=0,T=T,C=C,aty=0

2.6
u = azsiny + bycosy,v = —aysiny, T =Ty, C = Cx as y — 00 (2:6)
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where a,b and A are positive constants of dimension (time)! and Tw,,Cs are the constant
temperature and concentration of the fluid far away from the sheet and y is angle parameter.

Introducing the stream function ¢ (z,y) as defined by u = g—’;, v = f% the dimensionless
T—To C—Cu
Tw—Two Cow—Coo

n= %y,«s = \/%x . Using these in boundary condition (2.6)

temperature 0 = , the dimensionless concentration ¢ = and the similarity variable

¥=0,95 = £,6(0) = 1,6(0) = 1 at =0
I (2.7)

k
P = Ansiny + gnQCosy, 0 — 0,6 — Oasn — oo

where A = A is stretching sheet parameter and k = % is some positive constant. We seek
solution of equations (2.2) and (2.3) in the form of ) = £f(n) 4+ g(n) where the function f(n) and
g(n) are referring to the normal and tangential component of the flow. Using above the governing
equations reduces to (as explained in Singh et al., (see [13])

")+ fF) f" () — £/ (m)* = M(f'(n) — Asiny) + (Asiny)® =0 (2.8)
g"(m) + fmg"(n) = ' (n)g' (n) — M(g'(n)) — kncosy) — kmcosy =0 (2.9)
0" (n) + Prf(n)0' (n) + PrNyg' (n)0' (n) + PrN:16'(n)* =0 (2.10)

() + Lef )0/ (n) + 30" () =0 (2.11)

Boundary condition reduces to

f(O) = O’fl(o) = 1,9(0) = O,QI(O) = 0’9(0) = 1a¢(0) =1

. (2.12)
f'(00) = Asiny, g"(00) = kcosy,0(c0) = 0, p(c0) = 0

2
where primes denotes differentiation with respect to n and, M = ‘;B: is the magnetic parame-

ter, m is some real constant, Pr = = is the Prandtl number, Le = - is the Lewis number,

Dy,
Ny = %ﬁmbv is the Brownian motion parameter and N; = (eP)p De(Tw=Te) ig the ther-

(cp)pTocv

mophoresis parameter.

The quantities of practical interest are the Nusselt number N,, and the Sherwood number Sh which
are defined as Nu = fracxq,K(Ty — Tw), sh = % where ¢, and g, are the wall heat and
mass fluxes, respectively and K is the thermal conductivity of the fluid. Using Similarity variables,
we obtain Re; /*Nu = —0'(0), Re;'/Sh = —0'(0) where Re, = uy(z)x/v is the local Reynolds
number based on the stretching velocity u,(z). Kuzetsov and Nield [11]). referred Re'/?Nu and
ReY*Sh as the (2.8) and (2.11) subject to the boundary conditions (2.12) constitute a two-point
boundary value problem. In order to solve these equations numerically, we follow most efficient
numerical shooting technique with Runge integration scheme. It is worth mentioning here that
equations (2.8) and (2.9) with boundary condition (2.12) has been solved numerically by Singh
et al., 2010.

3 Results and Discussion

The Runge-Kutta Fehlberg method with the help of shooting technique has been used to solve equa-
tions (2.8) to (2.11) subject to the boundary conditions (2.12) for different values of M, X, ny, ny
and Le taking step size 0.001. While numerical simulation, step size 0.002 and 0.003 were all
checked and values of f”(0),¢"(0),6'(0) and ¢(0) found in each case were correct up to six decimal
places. Hence the scheme used in this paper is stable and accurate. It has been observed from
Table 1 that, the numerical values of (0) in the present paper for different value of Pr when
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ny, = 0,n; = 0,A = 0,y = /2 in absence of magnetic field are in good agreement with results
obtained by Khan and Pop[10]), Wang [17]) and Gorla and Sidawi [6]).
Table 1: Comparison of results for the reduced Nusselts number 6’(0)

Value of Pr | Khan and Pop [10]. | Wang [17]. | Gorla and Sidawi [6]). | Present Paper
0.70 0.4539 0.4539 0.5349 0.53487
2.00 0.9113 0.9114 0.9114 0.91166
7.00 1.8954 1.8954 1.8905 1.89034
20.00 3.3539 3.3539 3.3539 3.34994
70.00 6.4621 6.4622 6.4622 6.45879

Table 2: Values of reduced Nusselt number —¢’(0) and reduced Sherwood number ¢'(0) when
A=2and M =3

—0(0) —¢/(0) 1"(0) Pr |~ Le | ny Ny
—1.1492982 | —2.9234527 | 2.653930 | 10 | =/2 | 10 | 0.1 0.1
—1.1168558 | —2.8116037 | 1.885775 | 10 | «/3 | 10 | 0.1 0.1
—1.0770794 | —2.6708548 | 1.027422 | 10 | =/4 | 10 | 0.1 | 0.1
—1.0461960 | —2.5580143 | 0.422444 | 10 | =/5 | 10 | 0.1 0.1
—1.3815730 | —2.8150402 | 2.653930 | 10 | =/2 | 10 | 0.1 0.05
—1.3410427 | —2.7181180 | 1.885775 | 10 | =/3 | 10 | 0.1 0.05
—1.2911287 | —2.5971296 | 1.027422 | 10 | =/4 | 10 | 0.1 0.05
—1.2521525 | —2.5010682 | 0.422444 | 10 | =/5 | 10 | 0.1 0.05
—1.6063255 | —2.8403950 | 2.653930 | 10 | «/2 | 10 | 0.1 0.01
—1.5578009 | —2.7518132 | 1.885775 | 10 | /3 | 10 | 0.1 | 0.01
—1.4978592 | —2.6420914 | 1.027422 | 10 | =/4 | 10 | 0.1 0.01
—1.4508710 | —2.5557919 | 0.422444 | 10 | =/5 | 10 | 0.1 0.01
—1.5395909 | —2.3714272 | 2.653930 | 10 | =/2 | 10 | 0.05 | 0.1
—1.4960066 | —2.2509261 | 1.885775 | 10 | /3 | 10 | 0.05 | 0.1
—1.4425316 | —2.0969317 | 1.027422 | 10 | =/4 | 10 | 0.05 | 0.1
—1.4009731 | —1.9712720 | 0.422444 | 10 | «/5 | 10 | 0.05 | 0.1
—0.7728973 | —2.7627232 | 2.653930 | 0.7 | #/2 | 10 | 0.1 | 0.1
—0.8790425 | —2.7384882 | 2.653930 | 1 7/2 | 10 | 0.1 0.1
—1.2451040 | —2.7292317 | 2.653930 | 5 w/2 | 10 | 0.1 0.1
—0.7342667 | —2.6768300 | 1.885775 | 0.7 | #/3 | 10 | 0.1 0.1
—0.8365913 | —2.6522284 | 1.885775 | 1 7/3 110 | 0.1 | 0.1
—1.2005324 | —2.6318047 | 1.885775 | 5 7/3 | 10 | 0.1 0.1
—0.6465449 | —2.4867638 | 0.422444 | 0.7 | /5 | 10 | 0.1 0.1
—0.7387362 | —2.4607583 | 0.422444 | 1 7/5 | 10 | 0.1 0.1
—1.1003736 | —2.4125200 | 0.422444 | 5 7/5 | 10 | 0.1 0.1
0.1444885 —1.8881674 | 2.653930 | 10 | w/2 | 1 0.1 0.1
—1.6511198 | —0.6249025 | 2.653930 | 10 | /2 | 2 0.1 0.1
—1.5114309 | —1.1323003 | 2.653930 | 10 | 7/2 | 3 01 |01
—1.3446019 | —1.8342790 | 2.653930 | 10 | 7/2 | 5 0.1 0.1
—1.1492982 | —2.9234527 | 2.653930 | 10 | =/2 | 10 | 0.1 0.1
—1.7464306 | 0.29883752 | 0.422444 | 10 | n/5 | 1 0.1 0.1
—1.5260678 | —0.3957912 | 0.422444 | 10 | w/5 | 2 0.1 0.1
—1.3933471 | —0.8646115 | 0.422444 | 10 | «/5 | 3 0.1 0.1
—1.2335648 | —1.522038 | 0.422444 | 10 | n/5 | 5 0.1 0.1
—1.0461960 | —2.5580143 | 0.422444 | 10 | «/5 | 10 | 0.1 0.1
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Our main purpose is to explore the influence of the parameters ny, ny, Pr, Le with striking angle
v on the heat and mass flux characteristics. The variations of the dimensionless temperature and
concentration with Brownian motion parameter ny and v forn; = 0.1, M = 3,7 =2, Pr =10, Le =
10 have been presented through Figs. 2 and 3 and Table 2. As expected, the boundary layer
profiles for the temperature are of the same form as in the case of regular heat transfer fluids. The
temperature in the boundary layer increases with the increase in the Brownian motion parameter
np. The nanoparticle volume fraction profile, decreases with the increase in the n,. Brownian
motion serves to warm the boundary layer and simultaneously exacerbates particle deposition
away from the fluid regime (onto the surface), thereby accounting for the reduced concentration
magnitudes (Rana and Bhargava (see [12]). It is also noticed from figs that, as the striking angle
decreases, the temperature and concentration in the boundary layer increases with the Brownian
motion parameter. Reduced Nusselt number §(0) and re duced Sherwood number ¢’ (0) increase
with decrease in striking angle which has been shown in Table 2. It is also observed from Table
2 that reduced Nusselt number decrease and reduced Sherwood number increase with decrease in
Brownian motion parameter.

It is observed from Fig. 4 that the dimensionless temperature decreases with an increase in
the Prandtl number Pr for any value of striking angle and stretching parameter A = 2. This is
in agreement with the physical fact that at higher Prandtl number, fluid has a thinner thermal
boundary layer and this increases the gradient of temperature. Fig. 5 shows that concentration

1
----- Y =7/2, n, = 0.1
0.8 - — —y=1/2, nb=0.05
— =1/ n, = 0.1
o6k v\ = e Y =m/5, n, = 0.05
8(0)
0.4r
0.2t
5 . . attagan .
0 0.2 04 - 0.6 0.8 1 1.2

Figure 2: Effect of Brownian motion parameter n;, on temperature
distribution for specified parameters.
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Figure 3: Effect of Brownian motion parameter n;, on
concentration distribution for specified parameters.
1
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Figure 4: Effect of Prandtl number Pr on temperature
distribution for specified parameters.
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Figure 5: Effect of Prandtl number Pr
on concentration distribution for specified parameters.
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0.2 04 . 0.6 0.8 1 1.2
Figure 6: Effect of n, on temperature
distribution for specified parameters.

distribution increases with an increase in Pr. The temperature and concentration in the bound-
ary layer increases with decrease in striking parameter for any value of Pr. Reduced Nusselt number
decrease and reduced Sherwood number increase with increase in Prandtl number which has been
shown in Table 2.

Fig. 6 and 7 depicts the dimensionless temperature and concentration distribution for differ-
ent values of striking angle and thermophoresis parameter for n, = 0.1, A\ = 2, Pr = 10, Le = 10
and M = 3. It is observed that the decrease in striking angle leads to increase in dimension-
less temperature and concentration distribution. It also exhibits that dimensionless temperature
and concentration distribution reduces with thermophoresis parameter. Reduced Nusselt number
decrease with thermophoresis parameter, whereas and reduced Sherwood number increase with
increase in thermophoresis parameter which has been shown in Table 2.
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Fig. 8 and 9 portrays the dimensionless temperature and concentration distribution for dif-
ferent values of Lewis number taking n, = 0.1, \ = 2, Pr = 10,n; = 0.1 and M = 3. It has been
observed that the dimensionless temperature reduces with Lewis number. It shows the concen-
tration distribution increases with decrease in Lewis number. Table 2 exhibits that the reduced
Nusselt number increases with Lewis number, whereas and reduced Sherwood number decrease
with increase in Lewis number. For Le = 1 an opposite trend is observed for reduced Nusselt
number and reduced Sherwood number.

4 Conclusions

An analysis has been made for the steady two-dimensional flow of a viscous and incompressible
nanofluid striking at some angle of incidence on a stretching sheet. Influence of the parameters
ny, ng, Pr with striking angle v on the heat and mass flux characteristics has been studied. The
main results of the paper can be summarized as follows:

(a) The temperature in the boundary layer increases with the increase in the Brownian motion
parameter.

(b) The nanoparticle volume fraction profile, decreases with the increase in the Brownian motion
parameter.

(¢) Decrease in striking angle leads to increase in temperature and concentration in the boundary
layer with the Brownian motion parameter.

(d) Dimensionless temperature decreases whereas concentration distribution increases with the
increase in the Prandtl number.

(e) Dimensionless temperature and concentration distribution reduces with thermophoresis pa-
rameter.

(f) Dimensionless temperature decreases whereas concentration distribution increases with the
decrease in the Lewis number.

..... y=n/Z n =01
- = =y=n/2.n =005
0.8 ‘
—_—y =1 n{=£11
....... Y=n/5, n =005
0.6F '
0(0)
0.4r
0.2r
‘\..
~ 4-:“"' “c
0 L | I Bl T R By, |
0 0.2 0.4 0.6 0.8 1 1.2

Figure 7: Effect of n; on concentration distribution for specified parameters.
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Figure 9: Effect of Le on concentration distribution for specified parameters.
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Abstract : The logistic model of Verhulst forms the basis of the modern chaos
theory and thus represents the simplest cases of chaotic system. The significance of
this model is due to its strange conduct for changing values of the parameter. It can
exhibit stable, periodic and chaotic behaviours for the successive values of the growth
parameter. Our aim is to study the stability analysis of this map for Mann iterates
and visualize the fractal patterns for changing values of the parameters. The Matlab
tools are used for the computational and graphical purpose.
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1 INTRODUCTION AND PRELIMINARIES

The logistic growth model was proposed by the Belgian mathematician Verhulst [20] in the year
1845. In 1976, R. May [9-10] recognized the significance of this model specially for demographic
modelling. He observed that the continuous time model may not be suitable to reflect the realities
in most of the cases and constructed a discrete version of this model. The extreme sensitivity to
the initial condition is the most interesting aspect of this model due to which it exhibits a variety
of behaviors from stable to chaotic. Dettmer [3] pointed out that the regularity and stability
disappears from the system once it becomes chaotic and therefore it is important to recognize and
possibly avoid it. Kint et al [6] explored the graphical potential of this map and generated fractal
figures named as Verhulst fractals (see also [11]). The authors of this paper studied the stability
of the logistic and complex logistic map for different iterative schemes in [14-18]. Jaganathan and
Sinha [7] proposed the deformed nonlinear maps for expoloring the interestingly wide spectrum
of behaviours of some of the physical systems. They realized that ¢—deformation effectively takes
into account the interactions in physical systems and thus shows the rare phenomena of the co-
existence of the normal and chaotic nature (see also [1-2], [4]). Our aim is to study the stability of
the deformed logistic map in complex domain and visualize the fractal patterns for varying values
of the parameters under Mann iteration scheme.
First, we summarize the basic concepts required for our results.

Definition 1.1. Let X be a non-empty set and f : X — X. Then for any point g in X, the
iterative scheme xz,4+1 = f(x,),n = 0,1,2,... is called Picard iterate and the Picard orbit is
defined as follows

O(f,x0) :={xn : on=f(zp_1),n=0,1,2,...} (1.1)
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Definition 1.2 ([8]). Let X be a non-empty set and f : X — X. For a point z¢ in X, construct
a sequence {x,} in the following manner:

Tn4 = O‘nf(zn) + (1 - O‘n)zn (12)
forn=0,1,2,3,..., where 0 < a, < 1.

The sequence {x,} generated as above is called Mann iterate of a point zy and it is denoted
by MO(f,xg,a,). Tt is also called a two-step feedback scheme. In all our studies, we consider
anp=a,forn=0,1,2,3,..., where 0 < a < 1.

It is remarked that (1.2) with «,, = 1 generates the Picard orbit (1.1).

2 DISCUSSIONS AND RESULTS

Verhulst postulated that the growth rate at any time should be proportional to the fraction of the
environment that is not yet used up by the population at that time. Verhlust’s model was further
expressed by R. May [9] in the following manner

g1 = 12, (1 — 24), (2.1)

where z,, (a real number between 0 and 1) represents population density at time n = 1,2,3,...
and r is the combined rate for reproduction and starvation [5].

We study the stability of the logistic map with g-deformation proposed by Jaganathan and
Sinha [7] under Mann iterative scheme. A deformed version of the logistic map (2.1) is proposed
in [7] as follows:

Tp+1 = T[xn](l - [xn]) (2-2)

m and —1 < ¢ < oo for x in the interval [0, 1]. The g-deformed logistic map
(2.2) with Mann iteration (1.2) is given by

where [2] =

Tnt1 = ar[zy (1 — [2,]) + (1 — @)z, (2.3)

where 0 < a, < 1,[z,] = and —1 < € < oo for z in the interval [0, 1].

Ty
14e(l—x,

The quadratic transforma(ttions) of the type z — 2% + ¢, where z and ¢ both are from complex
plane C, are widely studied in the literature, see, for instance [17], [19] and several references of
them. Our aim is to study the map z — [2]? + ¢. The interest is to know the behaviour of the
structure of the orbit of the iterates of z when z and ¢ vary. For n = 0,1,2,..., the iteration
scheme for such a map is

Zni1 = [za]? +c. (2.4)

Following Peitgen et al. [12-13], one can easily find that (2.2) and (2.4) are identical for
c=r(2-r)/4, [zn] =7/2 —r[z,] and 2,41 = /2 — r2y41. This functional equivalence shows that
the fractal patterns shown by the map (2.2) are similar to that of the map (2.4).

2.1 Stability analysis through time series

We study the behavior of g-deformed logistic orbits generated by (2.3) using time series. For
this, we assume z,, = z,, + izr,,and r = r; +ir,. Now we compute the values of z, and z,,
at different iteration levels using the scheme (2.3) and find the optimum value of |r| for various
choices of parameter a and deformation parameter . We consider Xy = Xx, +iX,, = 0.01+0.01i
as the initial choice for our experimental study of the g-deformed complex logistic map (2.2) with
Mann iteration scheme. Our study involves two cases for the values of the parameter r.
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Case I: When r is purely real, we compute the orbits of the map for fixed o and € and go on
varying r until the iterate of the map remains bounded. These threshold values of r are computed

under 2000 iterations and shown in the Table 1.

Table 1. The optimum values of |r| (when r, = 0)

@ 1 0.7 0.4 0.1
19
-0.50 2.96 4.27 6.58 23.37
1 2.49 2.62 2.84 3.36
10 15541 | 1616 | 17.37 | 19.20

In this case it is observed that for a fixed € and varying « (from 1 towards zero), the optimum

value of the control parameter r increases surprisingly to a maximum of 23.37. The corresponding

fractal patterns and time series analysis showing the behaviours of the map for some random values

of r (shown underlined) are drawn, although the same could be drawn for all the tabulated values

of r (see figures 1, 3).
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(d)a=0.1,e = —0.5,r = 23.37

Figure 1: Time series at different values of a, & (when r, = 0).

Case II: In this case, we obtain the optimal values of a purely imaginary r for the same choices
of the parameters o and €. We observe that for a fixed ¢ and varying « (from 1 towards zero), the

optimum value of the control parameter r increases to a maximum of 48.22 for the same choice of

a and 3 (see Table 2).



Table 2. The optimum value of |r| (when r, = 0)

0™~ O W st m
N N O™

No. of iterations

0.013

. @ 1 0.7 0.4 0.1
—0.5 0.60 2.08 3.32 3.33
1 2.00 2.80 4.01 8.81
10 11.00 1500 | 22.02 | 48.22
12 0.2
1
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0 0
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08 |V 0.015 /\fM
# 06 % 0.0145 My
0.4 f 0.014 ™7
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0
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The corresponding fractal patterns and time series analysis for specific choices of r (shown
underlined) showing the behaviours of the map are drawn, although the same could be drawn for
all the tabulated values of r (see figures 2, 4).

(c)a=0.4,e=0.5,r=3.32

(d)a=0.1,6 = 10,r = 48.22
Figure 2: Time series at different values of a , & (when 7, = 0).
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(a) a=1le=1r=249 (b) a=0.7,e = —0.5,r = 4.27

(¢) a=0.4,e =10,r =17.37 (d) a=0.1,e = —0.5,r = 23.37
Figure 3: Fractal patterns for real r.

(a) a =1,e = —0.5,7 = 0.60 (b) a=0.7,e =1,r =2.80

(¢) a=04,e6 =0.5,r=3.32 (d) a=0.1,6 = 10,7 = 48.22
Figure 4: Fractal patterns for purely complex r.

3 CONCLUSION

We observe that for a fixed ¢ and varying a (from 1 towards zero), the optimum value of the control
parameter 7 increases to a maximum of 48.22 whereas it increases to a maximum of 23.37 in case
of purely real r for the same choices of o and 3 (see Table 1-2). The fractal patterns of ¢-deformed
logistic map for Mann iterative scheme are also plotted for same specific choices of the parameters
« and € . The chaotic behavior of the mapping shown for Picard scheme is found to be stable
when we use the two step Mann iterative scheme for fixed o and all values of the parameters €.
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Abstract : During the last decade, Turkish Ministry of National Education (MNE)
has undertaken many fundamental development and improvement efforts to improve
the quality of Turkish education system owing to educational reform movements of
other nations, Turkey’s candidacy for European Union (EU), and low performances of
Turkish students in international studies such as TIMSS, PISA, and PIRSL. One of
these fundamental changes is redeveloping the primary mathematics curriculum and
this newly developed primary mathematics curriculum has been implemented since
2005. The aim of the present study was to compare mathematics performances of
Turkish eighth graders participated in TIMSS 2011 and 2007. The comparisons were
made from different perspectives such as, average mathematics achievement scores
(AMAS), AMAS in content and cognitive domains, percentages of students reaching
international benchmarks of mathematics achievement as well as percentages of correct
responses for released items. The results displayed that in each handled area, the
mathematics performances of the eighth graders participated in TIMSS 2011 were
better than those of eighth graders participated in TIMSS 2007. It was concluded
that the new mathematics curriculum had a positive effect on students’ mathematics
performance.

Keywords: Curriculum reform, mathematics achievement, TIMSS

1 Introduction

Over the last decade, Turkish Ministry of National Education (MNE) has undertaken many de-
velopment and improvement efforts to improve the quality of Turkish education system. The
influential reasons for these efforts of Turkish Ministry of National Education are educational re-
form movements of other nations [4], Turkey’s candidacy for European Union (EU) [3], declaration
of World Bank [18] with regard to unsatisfactory level of education in Turkey, and finally low per-
formances of Turkish students in international studies such as Trends in International Mathematics
and Science Study (TIMSS) [7; 8; 9], Programme for International Student Assessment (PISA)
[11; 12; 13], and Progress in International Reading Literacy Study (PIRLS) [10]. In 1997, the
compulsory education was increased from five to eight. Curriculum reform in elementary grades
(grades 1 to 8) was started in metricconverterProductID2003 in2003 in five school subjects; life
science, mathematics, science and technology, social science, and Turkish. The duration of sec-
ondary education was extended from three to four in metricconverterProductID2005. In2005. In
2012 the compulsory education was increased from eight to twelve.
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One of these efforts is redeveloping the primary mathematics curriculum taking into consider-
ation that there are problems with regard to teaching mathematics in Turkey. The new primary
mathematics curriculum was prepared based on the mathematics education research studies con-
ducted in national and international areas, mathematics curriculum of developed countries as well
as experience of mathematics education in Turkey. The principle “every child can learn mathe-
matics” is the main focus of the new curriculum. This new curriculum stresses the mathematical
concepts, the relationships among these concepts, the meaning under procedures as well as pro-
cedural skills to be acquired. One of the important approaches of the new curriculum is that
it considers mathematics as an active process. Thus, the importance of learning environments
in which the students investigate, discover, solve problem, share and discuss their solutions and
approaches is strongly emphasized [5; 6].

The effect of new mathematics curriculum that has been implemented since 2005 has not been
investigated with respect to students’ academic performance up to now. Some studies have been
conducted from different perspectives to investigate whether the new primary mathematics curricu-
lum has provided positive improvements and developments. They engaged with different aspects
of the new curriculum such as the effects of new mathematics curriculum on teachers, students
and parents [17], evaluation of new mathematics curriculum based on teachers’ views [15], and
analyses of new mathematics curriculum based on opinions of 5t grade students and teachers with
respect to classroom management, instruction and strengths and weaknesses of the curriculum [2].
Differently from previous studies, this study is the first study investigating the effect of new math-
ematics curriculum with regard to students’ academic achievement in mathematics. The purpose
of this study is to investigate the effect of new primary mathematics curriculum by comparing
the mathematics performances of eighth grade Turkish students participated in TIMSS 2007 and
TIMSS 2011. It is evident that investigating the effect of a new curriculum with regard to academic
performances of students required long running comprehensive research studies; however TIMSS
provides unprecedented opportunity to make such comparisons by providing extensive information
on the performance of students in mathematics as well as sub-domains in mathematics. Turkish
eighth graders participated in TIMSS 2011 had been taught by the new primary mathematics
curriculum since they were at second grade whereas Turkish eighth graders participated in TIMSS
2007 had been taught by the new primary mathematics curriculum since they were at seventh
grade. Although, the mathematics performances of these students are lower than the international
average of TIMSS 2011 it is clear that their mathematics performances are higher than those of
eighth grade Turkish students participated in TIMSS 2007. Based on this difference the current
study is aimed to compare mathematics performances Turkish eighth grade students participated
in TIMSS 2007 and 2011 from different perspectives such as, mathematics performances at Bench-
marks, content and cognitive domains. Additionally, released items of both TIMSS 2007 and 2011
were scrutinized and percentages of correct responses of Turkish eighth graders participated in
TIMSS 2007 and 2011 were compared.

2 Procedure

2.1 Participants

Since the major aim of TIMSS is to provide comparative information about educational achieve-
ment across and within countries, the sample design of TIMSS also aims to provide accurate
measures of changes in student achievement from cycle to cycle [14]. Eighth grade population of
TIMSS is that the mean age at the time of testing is at least 13.5 years. The sampling design of
TIMSS is two-stage stratified cluster sample design schools as the first stage and intact classes as
the second stage [14]. As a result, 4498 and 6928 eighth grade Turkish students were participated
in TIMSS 2007 and 2011, respectively.
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2.2 Method

In the current study, mathematics performances of eighth grade Turkish students participated in
TIMSS 2007 and 2011 were compared descriptively. TIMSS mathematics assessment framework
is organized around two dimensions; a content dimension and a cognitive dimension. The content
dimension specifies the subject matter to be assessed within mathematics; number, algebra, geome-
try and data and chance whereas the cognitive dimension describe the sets of behaviors expected of
students as students engage with the mathematics content; knowing, applying, and reasoning. The
mathematics performances compared in the present study include overall mathematics achievement
average scores, average achievement scores in the number, algebra, geometry, and data and chance
mathematics content domains, average achievement scores in the knowing, applying, and reason-
ing cognitive domains as well as the percentages of students reaching international benchmarks of
mathematics achievement.

Since TIMSS that is repeated in each 4-year period provides trend data, assessment policy
of TIMSS provides for retaining some of the items for the measurement of trends and releasing
some items into the public domain. In addition to these comparisons, the released items of TIMSS
2007 and 2011 were investigated with regard to items’ specific mathematics subject matter and
the cognitive skills the items required. The aim of this investigation was to find comparable items
to reveal mathematics performance differences between two participant groups.

3 Results

The scaling methodology of TIMSS summarizes the achievement on a scale with a mean of 500
and a standard deviation of 100. Thus, this methodology enables comparable trend measures from
assessment to assessment. The results displayed that Turkey ranked as 31** in TIMSS 2007 out
of 50 countries with a score of 432 [8], whereas Turkey ranked as 24‘" in TIMSS 2011 out of 45
countries with a score of 452 [7]. When it is thought that the average scale of TIMSS is 500,
Turkey ranked under the international average in both TIMSS 2007 and 2011. However, it can be
concluded that there is a slight improvement (a score of 20) in the overall mathematics achievement
score between eighth graders participated in TIMSS 2007 and 2011.

The average achievement scores of Turkish eighth graders in four content domains for TIMSS
2007 and 2011 are presented in Table 1.

Table 1. Average achievement scores in content domains

TIMSS Content Domain
Number | Algebra | Geometry | Data and Chance
2007 429 440 411 445
2011 435 455 454 467
Difference 6 15 43 22

As seen in Table 1, average achievement scores of Turkish students participated in TIMSS 2011
were better than those of students participated in TIMSS 2007 in all of the four content domains.
When comparisons were made across the content domains, it is observed that the biggest differ-
ence is in the geometry content domain with a difference score of 43. The other content domains;
data and chance, algebra, and number follow the geometry content domain, respectively from the
biggest difference to the smallest difference.

The average achievement scores of Turkish eighth graders in three cognitive domains for TIMSS
2007 and 2011 are presented in Table 2.

Table 2. Average achievement scores in cognitive domains
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TIMSS Cognitive Domain

Knowing Applying Reasoning
2007 439 425 441
2011 441 459 465
Difference 2 34 24

As seen in Table 2, average achievement scores of Turkish students participated in TIMSS
2011 were better than those of students participated in TIMSS 2007 in all of the three cognitive
domains. When comparisons were made across the cognitive domains, it is observed that the biggest
difference is in the applying cognitive domain with a score of 34. The difference in the reasoning
cognitive domains is 24 whereas there is only 2-score difference in the knowing cognitive domain.
The results indicated that in TIMSS 2011 more students are able to apply mathematical knowledge
of facts, skills, and procedures and understand mathematical concepts to create representations.
Additionally, in TIMSS 2011 more students have the capacity for logical, systematic thinking, and
are able to use intuitive and inductive reasoning to arrive at solutions to non-routine problems.

The percentages of students reaching international benchmarks of mathematics achievement
in TIMSS 2007 and 2011 are presented in Table 3.

Table 3. Percentages of students reaching international benchmarks

TIMSS | International Benchmarks

Advanced | High Intermediate Low
2007 5 15 33 59
2011 7 20 40 67

As seen in Table 3, the percentages of students reaching international benchmarks in TIMSS
2007 are 5, 15, 33, and 59 for advanced, high, intermediate, and low, respectively. However, the
percentages of students reaching international benchmarks in TIMSS 2011 are 7, 20, 40, and 67
for advanced, high, intermediate, and low, respectively. The percentages of students participated
in TIMSS 2011 are more than those of TIMSS 2007 in all of the international benchmarks.

91 released items of TIMSS 2007 and 90 released items of TIMSS 2011 were scrutinized to
find comparable items to compare their percentages of correct responses. The content domain,
topic area, cognitive domain and the context of the items were investigated. In order to make
accurate comparisons very similar item pairs should be found among released items. Fifteen items;
seven items from TIMSS 2007 and eight items from TIMSS 2011 are found to compare students’
percentages of correct responses. These items are included in the content domain of number (whole
number, fractions and decimals), algebra (patterns), geometry (geometric measurement), and data
and chance (data interpretation). The comparison results display that in all of the item pairs
students participated in TIMSS 2011 have higher percentages of correct responses than those of
students participated in TIMSS 2007. Table 4 displays one of these item pairs. These comparison
results provide additional support for the previous comparisons displaying better performances for
students participated in TIMSS 2011.

In the current study mathematics performances Turkish eighth grade students participated
TIMSS 2007 and TIMSS 2011 were compared from different perspectives such as, mathematics
performances at Benchmarks, content and cognitive domains and percentages of students reaching
Benchmarks. In addition, released items of both TIMSS 2007 and 2011 were scrutinized and
percentages of correct responses of Turkish eighth graders participated in TIMSS 2007 and 2011
were compared. All of the comparison results displayed that Turkish eighth graders participated in
TIMSS 2011 displayed better mathematics performance than those of eighth graders participated
in TIMSS 2007.

Table 4. One sample item-pair
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Content Domain: Data and Chance Topic Area: Data Interpretation
TIMSS 2007 TIMSS 2011
Popularity of Subjects
A group of 10 students wanted to find out whether mathematics or history was
more popular for their group. They rated each subject using the following scale
1 2 3 4 5
O
Dislike a lot Dislike Neither dislike Like Like a lot
nor like
‘The table shows the results:
Students’ Ratings
sudent (MBI |
Alan 1 2
Lisa 1 1
Ann D 4
John 2 2
Connor 1 2
Georgia
Bret 2 1
Courtney 1 1
Tan
Jackson 3 2
Totals 30 24
A. Calculate the mean (average) rating for cach subject.
Mean rating for mathematics
Mean rating for history
According to the ratings, which is the more popular subject for this
group of students?
More popular subject:
The Real Burger Company owns 5 restaurants.
The number of staff members employed in their
5 restaurants are : 12,18,19,21 and 30 people
A. What is the mean number of staff members
in the 5 restaurants ?
Answer:
International Turkish Students . Turkish Students
International Average
Average Average Average
36 31 43 48

4 Discussion and Conclusion

The purpose of the current study was to compare mathematics performances Turkish eighth stu-
dents participated in TIMSS 2007 and 2011. The comparison results indicated that eighth graders
participated in TIMSS 2011 have better mathematics performances than those of students partic-
ipated in TIMSS 2007. The difference between these performances may be attributed to the new
primary mathematics performance. The compared items also support this idea that the consistent
differences observed in overall mathematics scores, mathematics achievement scores in content and
cognitive domains and percentages of students reaching Benchmarks as well may not be incidental.
When the comparisons across cognitive domains were considered, it was observed that the biggest
difference is in applying cognitive domain and then difference in the reasoning cognitive domain is
in the second order. These findings were supported by the idea that the new primary mathematics
curriculum emphasizes the development of higher order thinking skills as well as the application
skills of students in a range of contexts [5; 6]. Consistent with this idea, [1] indicated that new
mathematics curriculum can improve students’ higher order thinking level.

It is believed that the current study is valuable in terms of investigating the effect of new
mathematics curriculum with respect to students’ mathematics performances based on the results
of TIMSS. Differently from previous studies, this study is the first study investigating the students’
academic achievement in mathematics. Although investigating the effect of a new curriculum with
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respect to students’ academic achievement requires long running studies it is a good idea to use
results of TIMSS for such purposes. Based on the results of the current study, it is concluded
that the new mathematics curriculum has displayed a positive change with respect to students’
mathematics performance. It is predicted that mathematics performances of Turkish eighth graders
will improve gradually as the development processes proceed, problems with regard to implication
of the new curriculum are minimized, and above all new mathematics teachers are trained as best
implementers of the new mathematics curriculum.
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Abstract : The problem of pulsatile flow of a dusty fluid between permeable beds
is analyzed in the presence of magnetic field for both steady and unsteady cases. The

flow between the beds is governed by the Navier Stokes’ equations for the momentum,

for the fluid phase and the particle phase. The flow through the beds is governed

by the Darcy’s law. The influence of Hartmann number, permeability parameter,

the phase angle and the dust parameters namely mass concentration parameter and

time relaxation parameter on the velocity for both fluid and particles are discussed

graphically. Also the Skin friction coefficient is discussed through numerical values.
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Nomenclature :

U, v -
Up, Vp -
v -
p -
P -
Nm = p, -
K =6ruaBy -
R -
A -
h -

Q1 -
Q2 -

The velocity component of the fluid in the x and y direction
The velocity component of the Dust in the x and y direction
The suction/injection velocity

density

pressure

density of the particle

The magnetic Induction

Reynolds number

Non dimensional relaxation parameter

width of the channel

ki/u (22) Darcy’s velocity

ox
kaf/p % Darcy’s velocity

1 Introduction

It is of great importance for researchers in fluid dynamics to study the influence of inert particles

in the motion of fluids. This leads to the problems of mechanics of systems having two phases

which has been developing rapidly in recent years. The fluid flow embedded with dust particles is

encountered in a wide variety of engineering problems concerned with atmospheric fall out, dust

collection, nuclear reactor cooling, powder technology, acoustics, sedimentation, performance of

solid fuel, rock nozzles, batch settling, rain erosion, guided missiles, paint spraying etc.

Pulsatile flow is composed of a steady component and a superimposed periodical time varying

component called oscillation. Pulsatile flow has wide applications in the field of medicine like
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respiratory system, circulatory system etc ., and in the field of engineering such as reciprocating
pumps, IC engines, pulse combustors etc.

Flows through porous media are very much prevalent in nature and hence their study is of
principal interest in many scientific and Engineering applications. To study the under ground water
resources and seepage of water in river beds, one needs to investigate the flows of fluids through
porous media. Saffman [1] was the pioneer in studying the stability of the laminar flow of a dusty
gas with uniform distribution of dust particles. Ramamurthy et.al studied the unsteady flow of a
dusty fluid in a channel and a pipe[2] .A.J.Chamkha and J.Peddieson Jr.[3] considered the unsteady
flow of a dusty viscous fluid through a channel when the axial pressure gradient is an arbitrary
function of time values in magnitude but not in direction. B.J.Gireesha et.al, [4], investigated the
laminar flow of an unsteady viscous liquid with uniform distribution of dust particles through a
rectangular channel under the influence of pulsatile pressure gradient in Frenet Frame field system.
Also he considered the fluid and dust particles to be at rest initially and obtained the analytical
expressions for velocities of fluid and dust particles. N.Datta and D.C.Dalal [5] developed Laminar
flow and heat transfer of a dusty fluid in an infinite annular pipe with a pulsatile pressure gradient.
They [6] also considered the the problem of unsteady heat transfer to pulsatile flow of a dusty fluid
in a parallel plate channel . They had shown that the unsteady part of the fluid velocity as well
as the particle velocity has a phase lag which increases with increase of volume fraction.

Hazem.A.Attia [7] obtained numerical solution to the unsteady couette flow and heat transfer of
an electrically conducting viscous, incompressible dusty fluid with temperature dependent viscosity
with the assumption of very small magnetic Reynolds number. D.C.Dalal et.al [8] investigated the
problem of free convective heat transfer to a dusty fluid due to differentially heated vertical walls
of a rectangular Channel and obtained the solution using a combination of central and second
difference scheming.

Jagjit paul Kaur et. al [9] studied the flow of an incompressible viscous electrically conducting
dusty fluid in the presence of magnetic field of a uniform intensity in a channel whose cross section
is an porous regular hexagonal duct with impermeable boundary under time varying axial pressure
gradient. Ali.J.chamkha[10] obtained closed form transient solutions for hydromagnetic two-phase
particulate suspension flow in channels and circular pipes and numerical solutions for the thermal
problem. Nanigopal Datta and Saroj Kumar Mishra [12], considered the flow valid for any time
by employing numerical inverse Laplace Transform. A.K. Ghosh et.al constructed solution of the
problem of heat transfer associated with the pulsatile flow of a two-phase fluid particle system in
a channel bounded by two infinitely long parallel walls.

At present we know relatively very little about the pulsatile flow of dusty fluids between
permeable beds. Because of its intrinsic importance in many industrial problems and its relevance
to the general natural phenomena , in this paper we have chosen to study the flow of dusty fluids
between permeable beds in the presence of magnetic field.

2 Mathematical Formulation

Consider the pulsatile flow of a viscous incompressible dusty fluid between two permeable beds
under the influence of uniform transverse magnetic field. The fluid is injected into the channel
from the lower permeable bed with a velocity V and is sucked out into the upper permeable bed
with the same velocity. The permeabilities of lower and upper beds are respectively k1 and ks
.The flow in the upper and lower beds are governed by the Darcy’s law. The flow region between
the permeable beds is governed by the Navier Stoke’s Equations. The x-axis is taken along the
interface and the y-axis perpendicular to it.
The fluid is assumed to be driven by an unsteady pressure gradient
10p

s = A+ Be™! (2.1)
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where A and B are constants and w is the frequency. The equation governing the flow are
given

Fluid Phase

% g_y —0 (2.2)
2 2
g_f; —0 (24)
Particle phase

% %_y —0 (2.5)
%—I—V%—?——%(UP—M (2.6)

Boundary Conditions
y=0: "= up ‘;—Z\;Lk_l(um@n (2.7)
y=h: = ups j—Z:f\;Lk_Q(UBQ*Qz) (2.8)
0y (0) = £52(0) (29)

The boundary conditions (7) and (8) are due to Darcy’s Law on the boundary of the channel.
In the case of flow past a porous medium Beavers and Joseph [13] have shown that the usual no
slip condition is no longer valid and they have postulated that slip exists at the porous boundary,
because of the transfer of momentum. Equation (9) is taken with reference to [14], as the motion
f particle phase resemble that of a rarefied gas and it represents the condition that particles slip
at the boundary. & represents the particle phase dimensional slip coefficient.

Separating Equations (2)-(9) into steady part denoted by (7) and unsteady part denoted by
(), we obtain ,

ou
— =0 2.10
o (2.10)
ou 0’u  oBu KN
Ve =—Atvzs — —2 + —— (G, — @ 2.11
ou K _
and the corresponding boundary conditions are
-0 u=1u WO - Q) (2.13)
Y= = Uup1 dy = NG B1 1 .
=h: u=1u ﬂ*fi(ﬁ - Q2) (2.14)
y=n: = Uup2 dy = NS B2 2 .
_ du
iy (0) = €52 (0) (2.15)



Unsteady Part
o1

— =0 2.16
o (2.16)
di . d?>t oB?u KN
V—=—-Be"'!4+yp— — O (G, — @ 2.17
du,, duy, K -
ro_ - 2.1
and the corresponding boundary conditions are
- di a /. ~
y—O U =upi d_y = \/—k_l (UBl—Ql) (219)
di « -
—h- 0= i _:7_(~ 7 ) 2.20
Y U = UuUp2 dy ,—k2 up2 Q2 ( )
- du
iy (0) = €52 0) (2:21)

where € is the non dimensional wall slip coefficient. The coupled ordinary differential equations are

solved by usual method of finding complementary functions and particular integral. The solutions
are not given due to lack of space.

Non-dimensional quantities for steady part

I

Yy =14 U=y U=l U =2 Uy = A5
* Q * éz * :cv Y £ v
Qi=zr Q=77 vv=3 A=-4 (=%
o BYK? N / h
M==> f=5% 7= T=7y
da d*u o .
Rd—y:Rde—nyMqu;(upfu) (2.22)
da, r
m =-= (@p — @) (2.23)
and the corresponding boundary conditions are
du R
y=0: uU=1upi d—Z:adl (uBl—U—%) (2.24)
du R
y=1: U = Upy d—Z = —qo9 <ﬁ320—5> (2.25)
iy (0) = €22 (0) (2:26)
U =¢{— .
p dy

The coupled ordinary differential equations are solved by usual method of finding complemen-
tary functions and particular integral. The solutions are not given due to lack of space.

Non-dimensional quantities for unsteady part

vy =0 U= an Up=mr  Up = an Uy = A
B - vV 14 14 14
Qr = <& Q;:ﬁ g =2 B, =-B g:%
oB2h? N / h
M = p?) f = pm T = % T =Ty
The flow equations in steady state without * will become
di d*a f
R— =R+ — — M*u+ = (i, — 2.27
dy dy2 o (4p — @) (2.27)



di, 1

W (i — @) (2.28)
and the corresponding boundary conditions are
du R
yZOZ ’ﬁ:’ﬁBl d—Z:adl (’1131—0_—%) (2.29)
di R
y=1 @ = o d—; S—— (am - J—%) (2.30)
7, (0) = €5 (0) (231)
U =¢{— .
P dy

The coupled ordinary differential equations are solved by usual method of finding complemen-
tary functions and particular integral. The solutions are not given due to lack of space.
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Fgure 1. COMPARISON OF FLUID AND PARTICLE VELOCITY FOR DIFFERENT VALUES
OFMR=2;f=027=0.0250 =0y = 5;

Results and Discussion

Numerical calculations have been carried out for different values of the parameter entering into
the problem and the results are depicted graphically. Due to the presence of complex parameter
w the flow quantities will appear in complex form.

Hence for the discussion the graphs are drawn only for the real part. In figure 1,the fluid and
particle velocities are compared for different values of M. In the absence of magnetic field, i.e when
M=0, both fluid and particle velocities decrease and particle velocity is slightly less than that of
fluid. But as the Hartmann Number increases this trend changes. Both phase velocities increase
and also the velocity of particle is greater than that of the fluid. In figure 2 the velocity profile
of both phases have been compared for the effect of Reynolds number. It is very obvious that
increase in Reynolds number increases the fluid and particle velocity. The flow of fluid is parallel
to that of dust.

figure 3 shows that the unsteady velocity of fluid increases with increase in M, for the phases
wt = 0andw/4. But it decreases with increase in M for the phases wt = 37/4 and /2 which is
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shown in figure 4, figure 5 and figure 6 show the profile of unsteady velocity for different values of
R.
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Figure. 2 COMPARISON OF FLUID AND PARTICLE VELOCITY FOR DIFFERENT VALUES
OF RM =0;f=02;7=0.0250, =0 = 5; wt =0
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Figure. 3 UNSTEADY VELOCITY OF FLUID FOR DIFFERENT VALUES OF M R=2;f =
0.2;7=0.025;01 =09 =5
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Figure. 4 UNSTEADY VELOCITY OF FLUID FOR DIFFERENT VALUES OF M R=2;f =
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Figure. 5 UNSTEADY VELOCITY OF FLUID FOR DIFFERENT VALUES OF R M =0; f =
0.2;7=0.025;01 =02 =95; wt =0
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Figure. 6 UNSTEADY VELOCITY OF FLUID FOR DIFFERENT VALUES OF R M =0; f =
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Figure. 10 COMPARISON OF UNSTEADY VELOCITY OF FLUID FOR DIFFERENT VAL-
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Figure 7 shows the unsteady velocity for different values of 0. The velocity increases when the

phase increases from 0 to 7/2. However, when the phase angle increases from m/2 to 3w/4, the

velocity increases upto y=0.6, and then cross flow occurs and it starts increasing.
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Abstract : The decimal place value system with zero that is currently in use orig-
inated in India, and it is foundational to progress in mathematics. However, many
students, including high school students, experience considerable difficulties with this
vital concept. In my PhD thesis, I adopted a multi-dimensional approach to suggesting
possible ways to improve junior secondary school students’ conceptual understanding
of the structure of place value numeration by integrating ideas from Indian history of
mathematics and mathematics education research. The first part of the study anal-
ysed the history of mathematics, in particular Indian history, for ideas relevant to the
place value construct and these ideas were then incorporated into a teaching/learning
framework. The second part investigated the effectiveness of the framework devel-
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