
Low attainers exhibiting higher-
order mathematical thinking

ANNE WATSON

In an earlier issue of Support for Learning I said that there
is much to be written about how to support low achieving
students in the development of mathematical thinking
(Watson, 2001). In this article I will give several examples
of low attainers showing characteristics of mathematical
thinking often associated with high achievers. These
suggest that whatever is hampering their mathematical
attainment is not an inability to think in the ways which
enable others to succeed.

Recent research on the brain describes how natural brain
functions and human behaviour form the foundations of
mathematical thinking (for example, Butterworth, 1999;
Dehaene, 1997; Lakoff and Nunez, 2000). The implication
is that abilities to think mathematically and understand
mathematical concepts are adaptations of our natural brain
and bodily activities, given elementary inborn propensities
to recognise and compare small numbers. If this is true,
then those who are better at mathematics than others must
be better at learning from mathematical experiences, rather
than have innate superior abilities. The national emphasis
in the UK on raising standards has led to higher achievement
for some students, according to current measures. This
shows that teaching can make a difference to achievement
when guided by higher expectations. But the emphasis on
raising the achievements of those who are slightly below
the target standards ignores those who are well below those
levels. In this article I use examples from classrooms to
generate questions about the potential of currently low
attainers to do better in mathematics.

Some clear barriers to learning

For example, the ability to choose appropriate and efficient
strategies, and to adapt them if necessary, is seen as a
characteristic of high achieving mathematicians (Krutetskii,
1976). In Harding’s (2000) detailed examination of students’
take-up of mental arithmetic strategies she found that a few
students, even after close one-to-one teaching, were unable
to develop a repertoire of strategies. The strategy they used
changed as the project succeeded, but they changed from
always doing calculations one way to always doing them
another. They seemed to find being offered alternatives
confusing. These students appeared to be unable to choose
strategies, in spite of careful personal teaching.

Another example of a clear barrier to learning is given by
Tomkys (2001), who tells of a young student whose
performance in subtraction calculations was correct until
the end, where she always subtracted one from the units as
a final operation. In spite of being able to spend several
hours in one-to-one teaching, the teacher was unable to
locate the source of this error, supposing in the end that it
was a misapplication of a rule which might sometimes
apply correctly to the ‘tens’ column. It is a common
experience that some students become fixated on applying
inappropriate rules. Even when the student successfully
demonstrated subtraction with apparatus, and followed or
even initiated correct chains of reasoning with the teacher,
she still subtracted one after all other work had been done.
It was several weeks before the student was able to adapt
this incorrect strategy.

In the study I am about to describe there was one adolescent
student out of eleven low attainers who showed no evidence
at all of mathematical thinking processes. In a one-to-one
interview he was asked to ‘double’ nine in three different
contexts during half an hour. Each time he used a ‘count
all’ strategy afresh; he was unable to recall that he had
already done the calculation, or to recall whether the
answer he reached was correct or not.

Above we have three examples of barriers to learning:
inability to cope with choice; inability to give up a ‘known’
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rule; and inability to remember very recent results, or to
shift from counting to a cardinal concept of number (for
similar cases, see Butterworth, 1999). Any teacher will
have similar stories about students from whom they gain
very detailed knowledge of specific barriers to learning, but
it is also worth reporting that most students in Harding’s
study, rather than just the highest achievers, did exhibit the
higher-order behaviour described by Krutetskii. It does
seem to be true that explicit teaching of useful ways to
think can improve the attainment of many. The CAME
project, reported in an earlier Support for Learning
(Adhami, 2001), and its predecessor in science teaching,
the CASE project (Adey and Shayer, 1994), find that
students who had been encouraged to think enquiringly in
science or mathematics did better in a range of other
unrelated subjects than a comparative group who had not
had the same experiences. These studies lead me to ask:
what ways of thinking are employed by successful
mathematical learners and does it help to teach these
explicitly to low attainers?

A proficiency approach to mathematical thinking

The questions I have posed so far assume a deficit model of
the mathematical thinking skills of low attainers. However,
Harries’ work (2001) suggests a different approach. He
placed students in a situation in which they could leave a
trace of their thinking, showing clearly how they completed
a mathematical drawing task. Rather than teaching low
attainers to act out the characteristics of successful
mathematicians, we could continue Harries’ exploration
and look at proficiencies rather than deficiencies. What
kinds of thinking, which might lead to higher attainment in
mathematics, are manifested in the work of low attainers?
To recognise some of these, and work for their enhancement,
avoids the temptation to reduce complex ways of thinking
to lists of heuristics treated superficially which are then
performed as algorithms, rather than experienced as deeply
creative processes.

Harries’ work, reported in an earlier issue of Support for
Learning (2001), looked at how a sample of low attaining
students had worked on some mathematics. Using Logo, he
was able to keep records of the various ways in which they
had tried to instruct the computer to draw and move
simple objects, and then to use those objects as new
elements in the creation of further shapes and patterns. He
found evidence that most of them were able to transcend a
purely manipulative approach through seeing objects they
had made at one stage of their work as tools to use in the
next stage. These types of shift characterise the genesis of
mathematics, as generations of mathematicians developed
the subject as we know it today. For example, addition
develops from getting an answer by enumerating the
combined contents of two sets, through an appreciation of
cardinality, to using known number bonds as tools for
harder addition sums. This shift is inherent in the structure
of mathematics, so it is also a useful shift for a learner to
make.

That Harries found such a shift among some low attainers
suggests that there might be other forms of mathematical
thinking which have been characterised as features of the
work of high achievers, but which some low attainers
can do. For some reason these forms may not have been
harnessed in the teaching they have received, or their
response to it. I do not want here to discuss reasons why
this harnessing has not happened, but to point to some other
types of mathematical thinking which I have found some
low attainers to be using, or to be able to use.

The study

The following examples come from research in a class of
low attaining Year 9 students in a city comprehensive
school. The intake of the school was skewed towards lower
than average attainment levels, and this particular class
contained about eleven regular attenders (rather fewer than
were on roll) with a variety of behavioural problems,
language differences, patchy school histories and minor
learning difficulties. There would usually be one or two
support assistants in addition to the usual teacher. I had
arranged to observe one double lesson each week with the
intention of finding out how students would respond to
particular kinds of questioning and prompting within their
normal lessons. In the event, many factors typical of school
life prevented the study proceeding as planned (see Watson,
2000) and I became a teacher or support assistant as well as
an observer and interviewer. Nevertheless, I was able to
build up a substantial record of classroom incidents in
which students showed that they could make shifts, either
independently or with suitable prompts, which led them
into forms of mathematical thought beyond the superficial
features of the given task. Here I shall discuss two examples.

An example of flexible use of representation

Near the end of a lesson in which students had been
working with fractions I drew some identical squares on the
chalkboard and asked students to come to the board and
indicate how to quarter the squares (Figure 1). The first
offering was a drawing of the obvious vertical and horizontal
lines; the next was the two diagonals; the third, after a short
wait, was a dissection using three vertical lines to give four
congruent strips. So far students had interpreted the task as
producing four congruent shapes and there had been a sense
among those who came to the board of taking responsibility
for getting the usual examples done. After waiting in
silence a while I drew a version with two ‘strip’ quarters
and two ‘square’ quarters, there was a pause while they
considered what I had done. I asked them to vote on
whether they believed I had cut the square into quarters or
not. I was trying to encourage them to shift from seeing
fractions as congruent shapes to seeing fractions as quantities,
in this case making a link with area. Some of them were
able to do this, offering area as the way to ‘see’ it. One
student saw that further cutting and rearranging of the
pieces would allow you to see that they were equal in area.
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After this I paused and waited to see if anyone would offer
other ideas. One student offered the same dissection rotated
through a right angle. Then Darren drew a version with
three slanting lines, including one diagonal.

Figure 1: Examples of how students attempted to divide
squares into quarters

Because these students are labelled ‘low attainers’ it is
tempting to assume that he was wrong; that he had not
understood that the four pieces had to be equal in area.
Giving up congruence as a criterion may have suggested
that one could give up equality of any kind. He could also
have been trying to extend the idea of cutting diagonally by
mixing it with parallel cuts. This seems likely, given that
the diagonal idea had not yet been developed further. I
asked him if he was sure about where his lines should go.
He said he was not, and that he did not know where to put
them ‘to make each half into halves’. Of course, my
question ‘are you sure?’ may have given him the clue to
answer ‘no’, but his voluntary elaboration of the negative
answer revealed that he knew more: he had realised that
deciding where to put the lines was hard. Another student,
the one who had suggested rearranging pieces before, said
‘you can cut them up and move them around’ but could not
show us how to do that. The end of the lesson came and I
was unable to pursue this further.

It is hard to say exactly what was going on for individuals
in this story. Most of them were able to shift from seeing
fractions as congruent parts to fractions as something about
equal areas, that is, they were able to use the spatial
representation in a different way, as a result of being
offered the idea and asked to work with it. A few had taken
this further and made a definite link with area. One had
been prepared to abandon the square and move shapes
around, so that demonstrating equality was more important
than retaining the original shape. No one had abandoned
the notion of symmetry playing a role in this. It seemed as
if most of the students were able to adapt their interpretations
of a very familiar representation, but this happened to varying
extents. Again, I was struck that low attainers were able to
make such shifts, given the opportunity to do so.

Symbolisation can create difficulties for learners in
mathematics. All truly mathematical ideas are necessarily
abstract and we only have access to them through the way
they are represented on the page or with manipulable
materials. It follows, then, that learners whose understanding

of an underlying concept can be independent of a particular
representation of it are in a better position to extend their
understanding outside the confines of one representation,
or to recognise a familiar concept in unfamiliar clothes. Dreyfus
(1991) therefore points to flexible use of representations as
a useful advanced skill in working with mathematics.

An example of abstraction

Almira had been given a list of coordinates of points in the
positive quadrant. The task was to plot them all on a
coordinate grid and join them up in the order given to
make a picture. The finished picture was thus an in-built
self-checking device. When I looked at her work she had
drawn in a number of unconnected lines, rather than
systematically going from point to point in the order
offered (Figure 2). On closer inspection it was clear that she
had gone through the list of points and found all adjacent
pairs which were of the form (a, b) with (a+1, b-1) and had
entered those points and drawn the associated vector (1, -1).
In other words, she had focused on the relationships
between the points rather than the points themselves, and
selected all those for which the relationship was the same.
In drawing these in she had to use the actual positions of
the points, but had created for herself a higher level task
involving identifying relationships, classifying them, and
performing all those of the same type at once. In conversation
with her I found out that she had done this to make the task
‘more interesting’ and had thought it more efficient. In fact,
she was having to do deeper thinking and make more
passes through the data in order to complete the drawing,
so could be said to be doing more work, but her interest was
in the relationships and not the finished drawing. Here was
a low attaining student who had voluntarily made the task
more abstract and complex by shifting her focus from the
coordinates to the relationships between objects, using
coordinates as a tool to get her started, and using the drawn
lines themselves conceptually. In a sense she had invented
the concept of ‘vector’ (qualities which, in two dimensions,
can be represented by lines which have a given length and
direction) for herself. This shift would not be apparent in
the finished drawing and without a record of how the
drawing was constructed, such as Harries’ students were
able to produce, or my fortuitous observation, Almira’s
ability to apply higher-order mathematical thinking to the
task would be lost.

(0,0) (2,0) (1,1)
(1,3) (2,3) (3,4)
(3,7) (4,7) (5,8)
(4,9) (3,9) (2,8)

(2,5) (1,6) (-1,6)
(-2,8) (-2,4) (-1,3)
(-3,1) (-2,0) (-1,0)

(-2,1) (0,3) (0,0)

Figure 2: Almira’s work on the coordinate grid
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Almira demonstrated a deliberate shift from process to
concept. To extend the earlier example, addition develops
from being the process of combined enumeration to being
seen as only one of many ways of combining two or more
numbers, an example of the concept of binary operation.
Such ability to combine the roles of process and concept has
been described as a component of advanced mathematical
thinking (Tall, 1991, p.254). Equating, for example, leads
us to understand equations; then having equations as a tool
lets us use them in complex situations and treat them as
objects in their own right, not just as relationships between
other objects. Thus ‘equating’ can be a technical skill, a
concept, or an abstraction depending on how it is used and
how it is seen by the learner. In Almira’s work, she turns
the process of joining dots into a vector concept, and then
works with similarities and differences within this new-for-her
concept.

Issues for teachers

Harries (2001) points to the work of Krutetskii (1976) who
characterised the thinking of successful Russian mathematics
students as a possible source of information on ways to
think. Other sources of knowledge about mathematical
thinking would be Polya (1962) and Schoenfeld (1985),
who describe problem-solving heuristics; Mason, Burton
and Stacey (1982) talk more generally about ways to work
with mathematics, both solving problems and exploring
new ideas; Dubinsky (1991) discusses the Piagetian
process of reflective abstraction as a component of
advanced mathematical thinking. None of these writers
suggest that explicit teaching can help others think in these
ways, nevertheless the publication of their ideas suggests
an implicit theoretical belief that identifying, naming and
disseminating such descriptions makes them available for
wider use.

Teachers, however, often adopt different teaching styles for
different teaching groups. This suggests a professional belief
that it is not appropriate to expect lower mathematical
achievers to approach topics in the same way that high
mathematical achievers might. High achievers might be
expected to grasp abstract concepts quickly, manipulate
and explore them, deal with alternatives, find their way
through complexities, and so on. Instead, lower achievers
are seen to need more structured, step-by-step approaches,
mathematics presented in practical and contextualised
forms, and to practice simple algorithms.

But there is no standard recipe for mathematical success.
Dahl (2000) found that successful Year 13 students had a
variety of different ways of working on new mathematics:
there was not even commonality about whether they
worked by accepting the general statements of others and
manifesting them through specific examples, or whether
they used specific examples to help them understand
generalities for themselves. There were also various ways
of using intuition and short cuts in their work. If there is no
universal recipe for mathematical thinking, and an extant

belief that low attainers think in lower level ways, what can
teachers do to discover and use higher-order thinking
which might be taking place?

In Harries’ work (2001), a situation had been created in
which traces of thinking could be ‘read’ by the teacher, but
the activity itself structured the opportunity given to learners
to make the shifts he sought. In Darren’s case, the task had
been chosen to give an opportunity to go beyond the usual
responses; the teacher waited for a while and then gave a
clue that other things were possible; creative responses
were expected and, eventually, one was given. In Almira’s
case, the activity offered the opportunity to approach the
task in a variety of ways, from mundane to abstract. Once
her approach had been seen and recognised by a teacher
who may not already have seen the possibilities, questions
and prompts could be devised for other learners to help
them make the same shift. In this case, I had proceeded to
ask other students ‘What is the same about these two lines?
Can you see patterns in the numbers for these two lines?’
and so on. By doing this, I found that nearly all the class
could make a similar shift, given the prompting and the
chance to do so.

So there are several questions which arise for teachers of
low attainers in mathematics. Is it possible to structure
work so that higher-order thinking is encouraged and
noticed, even in simple mathematical situations? Can we trust
more low attainers to think in mathematically sophisticated
ways, even in simple situations? Do we recognise
higher-order approaches when they are being used, then
value them by making them explicit for others?
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