Some Triangle Geometry

Dick Tahta

1: Euler line and medial circle

- The perpendicular bisectors of the sides of a triangle are concurrent at a point which is equidistant from the vertices.

The perpendicular bisectors are also called mediators; they concur at a point O, called the circumcentre, which is the centre of the circumcircle through the vertices of the triangle.

- The lines joining vertices to midpoints of opposite sides are concurrent at a point that trisects the lines.

The lines are called medians and they concur at a point M called the median paint. The median point is the centre of gravity of equal weights at the vertices and is often also called the centroid.

- The perpenciculars from the vertices of a triangle to the opposite sides are concurrent, at a point which is isogonal to the circumcentre.

The perpendiculars are called altitudes: they concur at a point H called the orthocentre.

- The circumcentre O , the median point M , and the orthocentre H , are collinear, with M trisecting OH

The line $C M H$ is called the Euler line.
Euler lines of triangles the sides of the triangle in points $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$: the $A B C$ and with the same Euler line. $C X$ form a triangle congruent to

- The midpoint of OH is the centre of the circle through the midpoints of midpoints of the lines joining H through the feet of the altitudes and the The circle through the
circle, or the nine-points circle of the sides is called the medial through, as described in the previous paragraph

2: Miquel circles

- With any three points X, Y, Z on the sides of the triangle $A B C$, the circles $\mathrm{AYZ}, \mathrm{BZX}, \mathrm{CXY}$ meet in a point.

The circle are called the Miquet circles for the criple X, Y, Z, and the point common to them is called the Miquel point.

- The centres of a set of Miquel circles form a triangle that is similar to the original triangle.
- The Miquel point of a collinear triple of points lies on the circumcircle.
- The centres of the Miquel circles of a collinear triple and the circumcentre of the triangle lie on a further circle also passing through the Miqel point.

The previous result can be restated as follows: four lines form four triangles whose circumcircles meet at a point, and the circumcentres lie on the a circle also passing through the point. This can then be generalised: five lines form ten triangles whose circumcentres meet in fours af five points which lie on a circle.

- The circumcentres of the four triangles formed by four lines are concyclic, and the orthocentres are collinear.
- The midpoints of the diagonals of a quadrilateral are collinear.
- Any point P is the Miquel point of the triple formed by the feet of the perpendiculars from a point to the sides of a triangle; the Miquel circles in this case have diameters PA, PB, PC.

The triangle formed by the triple is known as the pedal triangle of the point P with regard to the triangle $A B C$. For example, the medial circle is the circumcircle of the pedal triangle of the orthocentre a well as the pedal triangle of the circumcentre.

- The pedal triangle of the pedal triangle of the pedal triangle of a point
is similar to the original triangle.

- The envelope of the pedal line of a point whose locus is the circumcircle is a three-cusped hypocycloid.

The envelope is also called a deltoid, or sometimes Steiner's hypocycloid. The three cusps of this curve form an equilateral triangle inscribed in a circle concentric with the medial circle and with three times its radius. The curve is also the locus of a point on a circle which is equal to the medial circle and rolling inside the larger circle containing the cusps.

Some pedal line properties: the opposite figure shows the pedal lines of each of four concyclic points with regard to the triangle formed by the other three - these are collinear at the common point of the four medial circles. The above figure shows the envelope (Steiner's hypocycloid) of the pedal line of a point on the circumcircle.

4: Orthocentric sets

- Each vertex of a triangle is the orthocentre of the triangle formed by H and the other two vertices.

A set of four points each the orthocentre of the other three is known as an orthocentric set.

- The circumcentres of the four triangles of an orthocentric set form another orthocentric set congruent to the first.
- The four triangles of an orthocentric set have the same medial circle.
- The centre of gravity of the four points of an orthocentric set is the centre of the common medial circle
- The centre of gravity of the centres of the inscribed and escribed circles is the circumcentre
- The centre of gravity of any four points (A, B, C, D) is the common midpoint of the corresponding pairs $(A B, C D ; A C, B D$; and $A D, B C)$ of the four points.
- The orthocentres of the four triangles formed from four concylic points form a set congruent to that of the four points. Three points from one of these congruent sets and the complementary one from the other form an orthocentric set.

The points of this configuration lie in fours on eight equal circles; they also form eight orthocentric sets. Each of these sets has a common medial circle : the eight such circles pass through a point. This point lies on the four pedal lines common to each of the orthocentric sets.

A configuration from four concyclic points: The four derived orthocentres form a congruent set; and the eight points lie in fours on eight equal circles with the various further properties given in 4.7.

,

5: Symmedian (Lemoime) point

- The isogonal conjugate of the median through A meets BC in X where $B X / C X=c^{2} / b^{2}$, etc, and $A X, B Y, C Z$ are concurrent

The isogonal conjugates of the medians are called symmedians and they concur at a point K called the symmedian point, or sometimes the Lemoine point.

- A symmedian bisects any antiparallel to its corresponding side.
- The perpendicular distances from the symmedian point to the sides of the triangle are proportional to the sides.
- The symmedian point is the median point of its pedal triangle.
- The symmedian point, the midpoint of a side, and the midpoint of the corresponding altitude, are collinear.
- The symmedian point, the median point, and the orthocentre of the pedal triangle of the symmedian point, are collinear.
- The symmedian point, the orthocentre, and the symmedian point of the pedal triangle of the orthocentre, are collinear.

6: Lemoine lime and circle

- The tangents to the circumcircle at A, B, C meet at K_{1}, K_{2}, K_{3} : the lines $\mathrm{AK}_{1}, \mathrm{BK}_{2}, \mathrm{CK}_{3}$ are concurrent at the symmedian point.

The tangents are sometimes called exsymmedians, and their intersections are the exsymmedian points K_{1}, K_{2}, K_{3}.

- The exsymmedians meet the opposite sides in $\mathrm{X}^{\prime}, \mathrm{Y}^{\prime}, \mathrm{Z}^{\prime}$ respectively: these points are collinear, lying on the polar of the symmedian point with regard to the circumcircle.

The polar of the symmedian (Lemoine) point is called the Lemoine line.

- The lines through the symmedian point parallel to the sides of the triangle meet the sides in six points that lie on a circle,

The circle containing the six points is called the Lemoine circle.

- The centre of the Lemoine circle is the midpoint of the symmedian point and the circumcentre.
- The Lemoine circle meets $B C$ at X_{2}, X_{3}, etc; the chords $Y_{1} Z_{2}, Y_{3} Z_{1}$ meet at U , etc, : then $\mathrm{AU}, \mathrm{BV}, \mathrm{CW}$ are concurrent.
- The chords $Y_{1} Z_{1}, Y_{3} Z_{2}$ meet at U^{\prime}, etc: then $U^{\prime}, V^{\prime}, W^{\prime}$ are collinear on the polar of the previous point of concurrence with regard to the Lemoine circle.
- The chords $\mathrm{X}_{2} \mathrm{Y}_{1}, \mathrm{X}_{3} \mathrm{Z}_{1}$ meet at $\mathrm{U}^{\prime \prime}$, etc: then $\mathrm{AU}^{\prime \prime}, \mathrm{BV}^{\prime \prime}, \mathrm{CW}^{\prime \prime}$ are concurrent at the symmedian point.

7: Brocard poimts

- The line through the symmedian point parallel to $B C$ meets the mediator of $B C$ at A_{1}, etc: the angles $A_{1} B C, B_{1} C A, C_{1} A B$ and $\mathrm{A}_{1} \mathrm{CB}, \mathrm{B}_{1} \mathrm{AC}, \mathrm{C}_{1} \mathrm{BA}$ are equal.

The common angle is called the Brocard angle.

- The Brocard angle w is such that $\cot \mathrm{w}=\cot \mathrm{A}+\cot \mathrm{B}+\cot \mathrm{C}$; and w cannot exceed 30°.
- The lines $\mathrm{AC}_{1}, \mathrm{BA}_{1}, \mathrm{CB}_{1}$ are concurrent, say at W. Similarly, the lines $A B_{1}, B C_{1}, C A_{1}$ are concurrent at the isogonal conjugate of W, say W'.
- W lies on the circle through A touching BC at B, etc. Similarly, W' lies on the circle through A touching BC at C, etc

The points W, W^{\prime} are known as the Brocard points. The circles are somerimes known as the adjoint circles of the triangle. The Brocard points may be alternatively defined defined as the common points of points may be alternatively diventy by the property that the angles $W B C, W C A, W A B$ and $W^{\prime} C B, W^{\prime} A C '^{\prime} W^{\prime} B A$, are equal.

- The line AW, the symmedian through B, and the median through C, are concurrent; and similarly for the corresponding vertices.

8: Brocard triangle and circle

- The triangle $A_{1} B_{1} C_{1}$ is similar to the triangle ABC ; moreover, $\mathrm{AA}_{1} \mathrm{BB}_{1}, \mathrm{CC}_{1}$ are concurrent, so that the triangles are in perspective. The triangle $A_{1} B_{1} C_{1}$ is known as the Brocard triangle, and its circumcircle as the Brocard circle.
- The median point of the Brocard triamgle is the median point of the orginal triangle ABC .
- The Brocard circle passes through the points $\mathrm{W}, \mathrm{W}^{\prime}$, the circumcentre

O , and the symmedian point K .

- The centre of the Brocard circle is the midpoint of OK, which is also the centre of the Lemoine circle.
- The Brocard circle also passes through the intersections of the pair of adjoint circles at each vertex of the original triangle; ie through A_{2}, the intersection of circles through A touching AB, AC respectively, and similarly for B_{2} and C_{2}.

The triangle $A_{2} B_{2} C_{2}$ is known as Brocard's second triangle.

- The vertices of Brocard's second triangle lie on the symmedians.
- The Brocard triangles are in perspective from the median point of the original triangle ABC .

Some Brocard triangle properties (8.5/7): The above figure shows Brocard's first and second triangles in perspective from the median point. The opposite figure shows the adjoint circles of a triangle intersecting in the Brocard point and the vertices of the second Brocard triangle

9: Steimer point

- The image of A in the mediator of BC is P , etc, and QR meets BC in X, etc: the lines $A X, B Y, C Z$ concur at a point on the circumcircle.

This point is known as the Steiner point S. It has a number of properties (or alternative definitions) such as those listed below.

- The pedal line of the Steiner point is parallel to the line joining the circumcentre and the symmedian point
- The lines through the vertices of a triangle parallel to the corresponding sides of the Brocard triangle concur at the Steiner point.
- The medians of the Brocard triangle meet the side of the original triangle in nine points which lie in threes on the sides of a triangle, one of whose vertices is the Steiner point; this triangle has the same median point and the same area as the original triangle.
- The Steiner point lies on an ellipse (known as Steiner's circumellipse) through the vertices with its centre at the median point.

10: Tarry point

- The pedal line of the point on the circumcircle diametrically opposite the Steiner point is perpendicular to the line joining the circumcentre and the symmedian point.

The point diametrically opposite the Steiner point is called the Taury point.

- The perpendiculars from the vertices of a triangle to the corresponding sides of the Brocard triangle concur at the Tarry point.
- The perpendiculars from the Tarry point to the sides of the triangle meet them in nine points which lie in threes on three lines, one which is the pedal line of T.
- The line joining the Tarry point and the median point meets the circumcircle again at a point (known as the Euler point) whose pedal line is parallel to the Euler line.
- The line joining the Euler point and the symmedian point meets the circumcircle again at a point whose pedal line is perpendicular to the line joining the median point and the symmedian point; moreover this point is collinear with the Steiner point and the median point.

11: Tritangent circles

- The internal angle-bisectors of a triangle are concurrent at a point which is the centre of the inscribed circle touching the sides.
- An internal angle-bisector of a triangle and the two external anglebisectors at the other two vertices are concurrent at a point which is the centre of an escribed circle touching the sides.

The inscribed circle is called the in-circle, an escribed circle is called an ex-circle; the corresponding centres are the in-centre I, and the three ex-centres I_{1}, I_{2}, I_{3}. The incircle and excircles are sometimes known as thetritangent circles.

- The tritangent circles touch the medial circle.
- The centres of the tritangent circles of a triangle form an orthocentric set.
- The sixteen tritangent circles of the four triangles formed from an orthocentric set touch the common medial circle of the four triangles.
- The centres of the four in-circles of the triangles determined by four concyclic points form a rectangle.

An equivalent property is that the sum of the radii of the two incircles for one triangulation of a cyclic quadrilateral is the same as that of the other triangulation. More generally, it then follows that the sum of the radii of the incircles is the same for every
triangulation of a particular cyclic polygon. This property was known to Japanese mathematicians in the eighteenth century.

12: Gergonne and Nagel points

- The points of contact of the sides of a triangle with the in-circle are $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$: the lines $\mathrm{AX}, \mathrm{BY}, \mathrm{CZ}$ are concurrent.
- The points of contact of the sides of the triangle with the ex-circle opposite A are X_{1}, Y_{1}, Z_{1}, etc: the lines $A X_{1}, B Y_{1}, C Z_{1}$ are concurrent etc.

The internal point of concurrence g is known as the Gergonne point the other three points of concurrence, g_{1}, g_{2}, g_{3} are called associated Gergonne points.

- The Gergonne point g is the symmedian point of the triangle XYZ and the associated point g_{1} is the symmedian point of the triangle $\mathrm{X}_{1}, \mathrm{Y}_{1}, \mathrm{Z}_{1}$, etc
- The internal points of contact of the sides of a triangle with the three ex-circles are $\mathrm{X}_{1}, \mathrm{Y}_{2}, \mathrm{Z}_{3}$: the lines $\mathrm{AX}_{1}, \mathrm{BY}_{2}, \mathrm{CZ}_{3}$ are concurrent.
- The points of contact of the sides of the triangle with the ex-circle opposite A are X_{1}, Y_{1}, Z_{1}, etc: the lines $A X, B Y_{3}, C Z_{2}$ are concurrent, etc.

The internal point of concurrence n is known as the Nagel point: the other three points of concurrence n_{1}, n_{2}, n_{3} are called the associated Nagel points.

- Each Nagel point is the isotomic conjugate of its corresponding Gergonne point.
- The Nagel point, the in-centre, and the median point are collinear, with the median point trisecting the line joining the other two; and similarly for the associated Nagel points and their corresponding excentre.

Some incidence properties of Gergonne and Nagel points

Some tritangent circle theorems (11.5/6): The opposite figure shows the sixteen tritangent circles of an orthocentric set. The above figure shows the rectangles formed by the sixteen centres of the tritangent circles of a concyclic set of four points.

13: Spieker circle

- The midpoints of the sides of the triangle ABC are $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime \prime}$, and the incircle of the midpoints triangle touches $\mathrm{B}^{\prime} \mathrm{C}^{\prime}$ at X^{\prime}, etc: the lines AX^{\prime}, $B Y^{\prime}, C Z '$ are concurrent at the Nagel point.

The in-circle of the midpoints triangle is called the Spieker circle.

- The centre of the Spieker circle is the midpoint of the Nagel point n and the in-centre I; its radius is half that of the in-circle of the triangle $A B C$.
- The centre of the Spieker circle is the centre of gravity of the perimeter of the original triangle.
- The Spieker circle is also the in-circle of the triangle formed by the midpoints of $\mathrm{An}, \mathrm{Bn}, \mathrm{Cn}$.

The Spieker circle may be compared with the medial (nine-point) circle: the fatter is half the circumcircle, with its centre collinear with O, M, H; the Spieker circle is half the in-circle, with its centre collinear with I, M, n. In both cases, the median point is a centre of similitude.

p

14: Apollomius circles

- The two angle bisectors at A meet the opposite side BC at X, X^{\prime} : these points divide BC 'internally and externally' in the ratio $\mathrm{AB} / \mathrm{AC}$.

This is Euclid, Book 6, proposition 3.

- The circle on XX' as diameter passes through A. This circle is the locus of a point such that $\mathrm{PB} / \mathrm{PC}$ is constant - namely equal to $\mathrm{AB} / \mathrm{AC}$

This property was given by Apollonius but it was already known to previous Greek mathernaticians. The circle is known as the Apollonius circle (of the triangle) through A. There are corresponding circles through B and C.

- The Apollonius circle through A is also the locus of a point from which two circles, with centres B, C and radii c, b respectively, are 'seen at a constant angle'

This property is the theme of one of the animated geometry films of Jean-Louis Nicolet. The angle between the two tangents to a circle from a point may be taken as a measure of the apparent size of the circle when viewed from the point. It is interesting to note that from our point of view the moon and the sun appear to be about the same size - they are both 'seen at a constant angle' of about . 5° (see note with proof 15.3.)

- An Apollonius circle is orthogonal to the circumcircle; for example, if L is the centre of the Apollonius circle through A, then LA is tangent to the circumcircle.
- The tangents MB, NC meet at a point $K_{1}: \mathrm{AK}_{1}, \mathrm{AK}_{2}, \mathrm{AK}_{3}$ are concurrent.

The point of concurrence is the sytmmedian point K; the centres of the Apollonius circles lie on the polar of the symmedian point with regard to the circumcircle, known as the Lemoine line (cf 6.2).

15: Fermat points

- The three Apollonius circles of a triangle intersect at two points $\mathrm{U}, \mathrm{U}^{\prime}$. The centres of the circles lie on the mediator of UU'.

The common points of the Apollonius circles are sometimes called the isodynamic (or Hesse) points of the triangle.

- The pedal triangles of the isodynamic points are equilateral.
- The isogonal conjugates of $\mathrm{U}, \mathrm{U}^{\prime}$ are points at which the sides of the triangle ABC subtend angles of 60° or 120°.

The isogonal conjugates of the isodynamic points are known as the Fermat points F, F^{\prime} of the triangle (or sometimes as the isogonal centres). When the angles of the triangle do not exceed 120° the internal Fermat point is the point with minimal sum of distances from the three vertices.

- The circumcircles of equilateral triangles constructed externally on the sides of the triangle intersect at a Fermat point F. Similarly, the circumcircles of equilateral triangles constructed internally on the sides of the triangle intersect at the corresponding Fermat point F^{\prime}.
- The vertices of the externally constructed equilateral triangles are P, Q, R : the lines $A P, B Q, C R$ are concurrent at the Fermat point and are equal in length. Similarly for the internally constrcuted equilateral triangles.
- The centres of the circumcircles in each of the previous constructions form an equilateral triangle.

The equilateral triangles formed by the circumcentres have been called the (outer and inner) Napoleon triangles, though there is no evidence that their property was known to Napoleon.

- The Napoleon triangles are each in perspective with the triangle ABC.

Fermat points and Napoleon triangles: The opposite figure shows the Fermat points (15.4) as the intersections of the six circumcircles of the equilateral triangles on the sides of the original triangle. The above figure shows the outer and inner Napoleon triangles (15.7) each in perspective with the original triangle.

16: Some cubics

- The vertices of the pedal triangle of a point P are X, Y, Z : the positions of P for which $\mathrm{AX}, \mathrm{BY}, \mathrm{CZ}$ are concurrent lie on a certain cubic which passes through the following points: the vertices, the circumcentre, the orthocentre, the in-centre and the ex-centres, the points at infinity on the mediators (so that these lines are asymptotes).
- The lines $A Q, B Q, C R$ meet the sides at X, Y, Z : the positions of Q for which the perpendiculars at X, Y, Z are concurrent lie on a certain cubic which passes through the following points: the vertices, the median point, the orthocentre, the Gergonne point and its associated points, the images of the vertices in the midpoints of the opposite sides.
- The above cubics each pass through the images in the circumcentre of the corresponding sets of points: that is, the circumcentre is a centre of symmetry for each curve.
- The isogonal conjugate of a point P with regard to the triangle is P^{\prime} : the points for which PP^{\prime} is parallel to OH lie on a cubic (known as the Neuberg cubic) which passes through the following points: the circumcentre and the orthocentre, the tritangent centres and their corresponding conjugates, the images of the vertices in the opposite sides and their conjugates, the isodynamic (Hesse) points and the Fermat points, the vertices of the Napoleon triangles drawn externally and their conjugates.

Cubics associated with the triangle (16.1/4): The above figure shows the locus of a point whose pedal triangle is in perspective with the original triangle. The opposite figure shows the locus (Neuberg's cubic) point whose join with its isogonal conjugate is parallel to the Euler line of the triangle

PROOFS

1.1 Mediators of AB, AC meet at $\mathrm{O}: \mathrm{OB}=\mathrm{OA}=\mathrm{OC}$, so O lies on mediator of BC .
1.2 Medians meet opposite sides at $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}: \mathrm{BA}^{\prime} / \mathrm{CA}^{\prime}=1$, etc, so (Ceva) $\mathrm{AA}^{\prime}, \mathrm{BB}^{\prime}, \mathrm{CC}^{\prime}$, concurrent. Moreover, triangles $\mathrm{AB}^{\prime} \mathrm{M}$, etc, are equal in area $\Rightarrow M$ trisects each median.
1.3 Altitudes meet opposite sides at $\mathrm{D}, \mathrm{E}, \mathrm{F}: \mathrm{BD} / \mathrm{CD}=\cot \mathrm{B} / \cot \mathrm{C}$, etc, so that (Ceva) AD, BE, CF concurrent. (Note $\angle \mathrm{DAC}=90^{\circ}-\mathrm{C}=$ $\angle B A O \Rightarrow A O$ isogonal conjugate of $A H$, etc.)
$1.4 \quad \mathrm{AP}=1 / 2 \cdot \mathrm{c} \cdot \cos \mathrm{A} / \sin \mathrm{C}=1 / 2 \cdot$ a $\cot \mathrm{A}=\mathrm{OA}^{\prime} \Rightarrow \mathrm{OA}^{\prime}=$ and $\| 1 / 2 \cdot \mathrm{AH}$ $\Rightarrow A A^{\prime}, O H$ trisect each other, and so at M with $O M=1 / 2 . M H$.
1.5 Gossard's theorem - suitable for Cabri confirmation.
1.6 N midpoint of $\mathrm{OH}: \mathrm{NA}^{\prime}=\mathrm{ND}=\mathrm{NP}=1 / 2 . \mathrm{OA}$, etc.
2.1 Circles BZX,CXY intersect in $\mathrm{P}: \angle \mathrm{YMZ}=\mathrm{B}+\mathrm{C}=180^{\circ}-\mathrm{A} \Rightarrow$ circle AYZ through P .
2.2 Centres $\mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{O}_{3}$ of Miquel circles: $\angle \mathrm{O}_{2} \mathrm{O}_{1} \mathrm{O}_{3}=180^{\circ}-\angle \mathrm{ZPY}=\mathrm{A}$, etc.
$2.3 \angle \mathrm{BPC}=\angle \mathrm{BPX}-\angle \mathrm{XPC}=\angle \mathrm{BZX}-\angle \mathrm{XYC}=\mathrm{A}$, so P lies on circumcircle of ABC .
$2.4 \quad \angle \mathrm{O}_{2} \mathrm{PO}_{3}=\angle \mathrm{O}_{2} \mathrm{PX}+\angle \mathrm{XPO}_{3}=90^{\circ}-\angle \mathrm{PBX}-90^{\circ}+\angle \mathrm{PCX}=\angle \mathrm{BPC}=\mathrm{A}$ $=\angle \mathrm{O}_{2} \mathrm{O}_{1} \mathrm{O}_{3}$, etc, \Rightarrow circumcentres concyclic though P .
2.5 See 2.6, or using properties of pedal line (cf 3.1) note that the common pedal line of P with regard to the four triangles bisects line joining P to the four orthocentres, so these are collinear.
2.6 AD is altitude from A , through orthocentre H , and L is centre of circle through H , on AX as diameter, etc: the product $\mathrm{AH} . \mathrm{HD}=$ $4 R^{2} \cdot \cos A \cdot \cos B \cdot \cos C=a^{2} / 4-L H^{2}$, and similarly for $M, N: \Rightarrow H$ lies on line joining common points of the circles on $\mathrm{AX}, \mathrm{BY}, \mathrm{CZ}$ as diameters, so that the centres of these circles are collinear. (This is known as the Gauss-Bodenmiller theorem.)
$2.7 \angle \mathrm{PYA}=\angle \mathrm{PZA}=90^{\circ} \Rightarrow \mathrm{PA}$ is diameter of circle AYZ , etc.
2.8 Successive pedal triangles are $X_{i} Y_{i} Z_{i}: \angle B_{3} A_{3} P=\angle B_{2} C_{2} P=$ $\angle A_{2} B_{1} P=\angle A_{2} B_{1} P=\angle B A P$, similarly $\angle P A_{3} C_{3}=\angle P A C$, so that $\angle \mathrm{B}_{3} \mathrm{~A}_{3} \mathrm{C}_{3}=\angle \mathrm{BAC}$.
$3.1 \angle \mathrm{BZX}=\angle \mathrm{BPX}=90^{\circ}-\angle \mathrm{PBC}=90^{\circ}-\angle \mathrm{PAY}=\angle \mathrm{APY}$, so XYZ a line.
3.2 AH meets circumcircle again at $\mathrm{H}^{\prime}, \mathrm{PH}^{\prime}$ meets BC at S and pedal line at $\mathrm{T}: \angle \mathrm{YXP}=\mathrm{Y} C P=\angle A H^{\prime} \mathrm{P}=\angle X \mathrm{XH}^{\prime} \Rightarrow \mathrm{TP}=\mathrm{TX}=\mathrm{TS}$, ie T midpoint of $\mathrm{PS} \Rightarrow \mathrm{XY} \| \mathrm{ZHS}$, so XYZ bisects PH .
3.3 Pedal lines of diametrically opposite P, P^{\prime} are perpendicular and meet medial circle at $\mathrm{Q}, \mathrm{Q}^{\prime}: \mathrm{Q}^{\prime}, \mathrm{Q}^{\prime}$ are diametrically opposite so pedal lines through Q, Q^{\prime} meet on the medial circle.
3.4 Pedal lines of PQ meet at $\mathrm{X}, \mathrm{H}^{\prime}$ image of H in X , orthocentre of PQH ' is R: pedal lines of P, Q bisects PH, QH and so parallel to $\mathrm{PH}^{\prime}, \mathrm{QH}^{\prime}, \Rightarrow \angle \mathrm{PRQ}=180^{\circ}-\angle \mathrm{PAQ}, \Rightarrow \mathrm{R}$ on circumcircle and pedal line of $\mathrm{R} \| \mathrm{RH}^{\prime}$ and hence the third pedal through X . Steiner's theorem - suitable for Cabri confirmation.
4.1 For A is on altitudes of triangle HBC , etc.
4.2 $\quad \mathrm{O}_{2} \mathrm{O}_{3}$ is mediator of AH , so perpendicular to OO_{1}, etc $\Rightarrow \mathrm{O}$ is orthocentre of $\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3}$; moreover $\mathrm{OO}_{1}=\mathrm{AH}$ so that circumcentres form a set congruent to $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{H}$.
4.3 Medial circle of BHC passes through the midpoints of BC, CH, BH , and so is medial circle of triangle ABC .
4.4 Equal weights at the vertices A, B, C and orthocentre H may be replaced two at the midpoint A^{\prime} of BC and two at the midpoint P of AH ; and the centre of gravity of these at the midpoint of $A^{\prime} P$, namely the centre of the medial circle.
4.5 Beltrami's theorem: an application of 4.4.
4.6 Equal weights at the vertices A, B, C, D may be paired in three ways each of which yields the common centre of gavity.
4.7 Concyclic points A_{i}; orthocentre of A_{2}, A_{3}, A_{4} is H_{1}, etc: $\mathrm{A}_{1} \mathrm{H}_{4} \mathrm{H}_{1} \mathrm{~A}_{4}$ is a parallelogram, $\mathrm{H}_{1} \mathrm{H}_{4}=\mathrm{A}_{1} \mathrm{~A}_{4}$, etc, ie the H_{i} are congruent to the A_{i}, and $\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3} \mathrm{H}_{4}$, etc, or $\mathrm{A}_{1} \mathrm{H}_{2} \mathrm{H}_{3} \mathrm{H}_{4}$, etc, form orthocentric sets.
5.1 Distances of X from $A C, A B$ are y, z, of A^{\prime} from $A C, A B$ are $q, r: y / A X=r / A A^{\prime}$ and $z / A X=q / A A^{\prime} \Rightarrow y / z=r / q=b / c \Rightarrow B X / C X$ $=\mathrm{c}^{2} / \mathrm{b}^{2}$, etc, so that (Ceva) AX, BY,CZ concurrent.
5.2 Reflecting in an angle bisector, the corresponding symmedian and antiparallel become median and parallel.
5.3 Distances of K from sides are $x, y, z: y / z=b / c$, etc, $(c f 5.1) \Rightarrow$ $x / a=y / b=z / c=2 a b c / R\left(a^{2}+b^{2}+c^{2}\right)$.
$\angle \mathrm{MAB}=\angle \mathrm{KAY}=\angle \mathrm{KZY}=90^{\circ}-\angle A Z Y$, so that AM is perpendicular to $Y Z$; with $A^{\prime \prime}$ the image of A in A^{\prime}, triangles $C A A^{\prime \prime}, K Y Z$ are similar, and since these are rotated through 90° and CA^{\prime} bisects AA", then XK bisects YZ.
The centres of rectangles inscribed in the triangle with a side on BC are collinear; and the midpoint of BC , the symmedian point K and the midpoint of the altitude through A are such centres. (Brocard's theorem)
Alias, the median point lies on the Euler line of the pedal triangle of the symmedian point; for the pedal triangles of the isogonal conjugates M and K have the same circumcircle, with its centre at the midpoint of MK. (Tucker's theorem)
Alias, the symmedian point, the incentre, and the symmedian Alias, the symmedian point, the incentre, and of the ex-centres. are collinear. (Vian Aubel's theorem) The isotomic conjugate of the orthocentre also lies on the line
$\mathrm{A}^{\prime} \mathrm{K}_{1}, \mathrm{~K}_{2} \mathrm{~K}_{3}$ meet BC at $\mathrm{X}, \mathrm{X}^{\prime}: \mathrm{BX} \mathrm{X}^{\prime} / \sin \mathrm{C}=\mathrm{AX}^{\prime} / \sin \mathrm{B}$ and $\mathrm{CX}^{\prime} / \sin \mathrm{B}=\mathrm{AX}^{\prime} / \sin \mathrm{C} \Rightarrow \mathrm{BX}^{\prime} / \mathrm{CX}^{\prime}=\mathrm{C}^{2} / \mathrm{b}^{2}=\mathrm{BX} / \mathrm{CX} \Rightarrow \mathrm{AK}_{1}$ passes through symmedian point K .
6.2 The polar of X^{\prime} is $A X$ through $K \Rightarrow$ polar of K through X^{\prime}
$6.3 \quad \mathrm{AY}_{3} \mathrm{KZ} Z_{2}$ is a parallelogram, so $A K$ bisects $Y_{3} Z_{2}$; hence $Y_{3} Z_{2}$ is antiparallel to $B C, L A Y_{3} Z_{2}=\angle A Z_{1} Y_{1}$, etc, ie the six points are concyclic, with centre at midpoint of OK

Cot $w=1 / 2 \cdot a / K K_{1}=\left(a^{2}+b^{2}+c^{2}\right) / 4 D=\cot A+\cot B+\cot C$ OK is diameter of Brocard circle; midpoint centre of Lemoine circle, as above (5.6)
$\angle B A_{2} C=2 A \Rightarrow A_{2}$ on circle $B C O \Rightarrow$ perpendiculars from A_{2} to $A B, A C$ are in ratio $c: b$, so that A_{2} lies on symmedian $A K$; and $\angle \mathrm{OA}_{2} \mathrm{~A}=90^{\circ} \Rightarrow \angle \mathrm{OA}_{2} \mathrm{~K}=90$
As proved in previous note
$8.7 \quad \angle C_{1} A_{1} M=\angle C A M=\angle B A K=\angle C A A_{2}=L C_{1} A_{1} A_{2} \Rightarrow$ points A_{1}, M, A_{2} are collinear.
$9.1 \mathrm{P}, \mathrm{Q}, \mathrm{R}$ are on circumcircle: $\mathrm{BX} / \sin (\mathrm{C}-\mathrm{A})=\mathrm{BR} / \sin (\mathrm{B}-\mathrm{C}))$ $C X / \sin (A-B)=C Q / \sin (B-C), \Rightarrow B X / C X=b \cdot \sin (C-A) / c \cdot \sin (A-B)$, so (Ceva) AP, BQ, CR concurrent.
This and the following properties are suitable for Cabri confirmation. Otherwise they may be verified using Argand representations of the points; for example, the Steiner point has affix $\mathrm{s}=\mathrm{abck} / \mathrm{k}$ where k is that of the symmedian point, whence the various properties may be derived.
9.3 The Argand representations of the vertices of the Brocard triangles are $\mathrm{a}_{1}=\mathrm{k} / 2+\mathrm{bck} / 2$, etc.
The other two vertices are s_{2}, s_{3} with $s+s_{2}+s_{3}=a+b+c$.
9.5 Steiner sought the circumellipse with minimum area, and found that this was the one with centre at the median point.
10.1 This and the following properties may be derived from the corresponding properties of the Steiner point.
10.2 In the Argand representation the affix of the Tarry point is $t=-s$
10.3 This is also clearly suitable for Cabri confirmation.
10.4 Affix of the Euler point is $\mathrm{abch} / \mathrm{h}$ where h is that of the orthocentre.
10.5 Affix of the derived point is $\mathrm{abc}(3 \mathrm{k}-\mathrm{a}-\mathrm{b}-\mathrm{c}) / 3(\mathrm{k}-\mathrm{s})$
11.1 Bisectors of B, C meet at I: I equidistant from sides $A B, A C$, and so on bisector at A
11.2 External bisectors at B, C meet at $I_{1}: I_{1}$ equidistant from sides $A B, A C$, and so on bisector at A.
11.3 Trigonometric manipulations yield $\mathrm{IN}^{2}=(\mathrm{R} / 2-\mathrm{r})^{2}$, so that medial circle, centre N, radius $R / 2$, touches circle centre I, radius r, etc (Feverbach's theorem: there are many other proofs.)
$11.4 \quad \mathrm{I}_{1} \mathrm{~A}$ is perpendicular to $\mathrm{I}_{2} \mathrm{I}_{3}$.
11.5 This is an application of Feurbach's theorem (11.3)
11.6 The distances from circumcentre to sides are $\alpha, \beta, \gamma, \delta$, and the circumradius is R : then the sum of the radii of the in-circles touching a diagonal is $\alpha+\beta+\gamma+\delta-2 R$, ie the same in each case. It can then be shown that the in-centres form a rectangle.
12.1 $\mathrm{AY}=\mathrm{AZ}=\mathrm{s}-\mathrm{a}$, etc, so (Ceva) $\mathrm{AX}, \mathrm{BY}, \mathrm{CZ}$ are concurrent.
$12.2 \quad B X_{1}=B Z_{1}=s-c, C X_{1}=C Y_{1}=s-b, A Y_{1}=A Z_{1}=s$, so (Ceva) $\mathrm{AX}_{1}, \mathrm{BY}_{1}, \mathrm{CZ}_{1}$ are concurrent.
12.3 A, B,C are exsymmedian points (cf 6.1) of the triangle XYZ, so that g is the symmedian point of XYZ , etc.
$12.4 \mathrm{BX}_{1} / \mathrm{CX}_{1}=(\mathrm{s}-\mathrm{c}) /(\mathrm{s}-\mathrm{b})$, etc, so (Ceva) $\mathrm{AX}_{1}, \mathrm{BY}_{1}, \mathrm{CZ}_{1}$ are concurrent.
$12.5 \mathrm{BX} / \mathrm{CX}=(\mathrm{s}-\mathrm{b}) /(\mathrm{s}-\mathrm{c}), \mathrm{CY}_{3} / \mathrm{AY}_{3}=\mathrm{s} /(\mathrm{s}-\mathrm{b}), \mathrm{AZ}_{2} / \mathrm{BZ}_{2}=(\mathrm{s}-\mathrm{c}) / \mathrm{s}$, so (Ceva) $\mathrm{AX}, \mathrm{BY}_{3}, \mathrm{CZ}_{2}$ are concurrent.
$12.6 \mathrm{BX}_{1}=\mathrm{CX}=(\mathrm{s}-\mathrm{c})$, etc.
$12.7 \mathrm{X}_{1} \mathrm{D} / \mathrm{A}^{\prime} \mathrm{X}=\mathrm{AD} / \mathrm{IX}=2 \mathrm{~s} / \mathrm{a} \Rightarrow \mathrm{AX}_{1} / \mathrm{IA}^{\prime}=2 \mathrm{~s} / \mathrm{a}$; but $\mathrm{AX}_{1}=\mathrm{s} / \mathrm{a}$. An so that $\mathrm{An}=$ and II $1 / 2 \cdot \mathrm{IA}^{\prime}, \Rightarrow \mathrm{IA}^{\prime}, \mathrm{AA}^{\prime}$ trisect each other, and so at the median point M .
13.1 $B X 1=2 C^{\prime} \mathrm{X}^{\prime}=(\mathrm{s}-\mathrm{c}), \Rightarrow \mathrm{AX} 1$ through Nagel point n .
13.2 S midpoint of $\operatorname{In} \Rightarrow$ M midpoint of $S I \Rightarrow A^{\prime} S \| A I \Rightarrow A^{\prime} S$ bisector of angle $\mathrm{B}^{\prime} \mathrm{A}^{\prime} \mathrm{C}^{\prime}$
13.3 Each side may be replaced by a weight equal to half the side at the midpoint, ie equal to the opposite side of the midpoint triangle.
13.4 Triangles IQ'R', ABC are similar, scale factor $1 / 2$.
14.1 $\mathrm{XB} / \mathrm{XC}=\mathrm{AB} / \mathrm{AY}=\mathrm{AB} / \mathrm{AC}$.
14.2 $\angle X A X '=90^{\circ}$, so that $X X^{\prime}$ is diameter of circle through A; for any other vertex P than $\mathrm{A}, \mathrm{PB} / \mathrm{PC}=\mathrm{XB} / \mathrm{XC}=\mathrm{X}^{\prime} \mathrm{B} / \mathrm{X}^{\prime} \mathrm{C}=$ constant $\Rightarrow X, X^{\prime}$ are fixed points, so that P lies on the same circle as A.
14.3 $P B=c \cdot \sin \beta / 2$, similarly $P C=b \cdot \sin \gamma / 2$: then $\beta=\gamma \Rightarrow P B / P C=c / b$ $=$ constant. Note: Moon: distance $=384,400 \mathrm{~km}$, radius $=1738 \mathrm{~km}$ Sun: distance $=149,598,000 \mathrm{~km}$, radius $=696,000 \mathrm{~km}$; so that subtended angle for Moon is. 52°, and for Sun is $.53^{\circ}$
14.4 $L L A C=L L A X-A / 2=L L X A-A / 2=L A B L$.
14.5 Polar of K_{1} through L, so polar of L through K_{1} ie $A K_{1}$ is polar of L, hence through pole of collinear LMN
15.1 U on A-circle through $\mathrm{B}, \mathrm{C}: \mathrm{UC} / \mathrm{UA}=\mathrm{BC} / \mathrm{BA}, \mathrm{UA} / \mathrm{UB}=\mathrm{CA} / \mathrm{CB}$ $\Rightarrow U B / U C=A B / A C$, so that U also on A-circle through A.
15.2 Sides of pedal triangle are UA. $\sin A, U B \cdot \sin B, U C \cdot \sin C$; these are equal since UA:UB:UC $=1 / a=1 / b=1 / c$.
$15.3 \angle \mathrm{FBC}+\angle \mathrm{FCA}=\angle \mathrm{UBA}+\angle \mathrm{UCA}=60^{\circ} \Rightarrow \angle \mathrm{BFC}=120^{\circ}$.
15.4 Circumcircles $A B R, A C Q$ meet at $F: \angle B F C=120^{\circ} \Rightarrow F$ on circle BCP; and similarly.
15.5 Lines FA, FP, etc, all at 60°, so that $\mathrm{A}, \mathrm{F}, \mathrm{P}$ collinear, etc. Also $A P^{2}=a^{2}+c^{2}-2 a c \cdot \cos \left(B+60^{\circ}\right)=\left(a^{2}+b^{2}+c^{2}\right) / 2+8 / 3 a b c$, which is symmetrical in a, b, c so that $A P$ is equal to $B Q, C R$.
15.6 Circumcentres $\mathrm{p}, \mathrm{q}, \mathrm{r}$: lines pq , pr perpendicular to $\mathrm{CF}, \mathrm{BF} \Rightarrow \angle \mathrm{qpr}$ $=180^{\circ}-\angle B F C=60^{\circ} \Rightarrow$ triangle pqr equilateral.
15.7 Ap $/ \sin \left(B+30^{\circ}\right)=c / \sin \left(\theta+30^{\circ}\right)$, Ap $/ \sin \left(C+30^{\circ}\right)=b / \sin \left(\theta-30^{\circ}\right)$, $B X / \sin \left(\theta+30^{\circ}\right)=p X / \sin 30^{\circ}, C X / \sin \left(\theta-30^{\circ}\right)=p X / \sin 30^{\circ}, B X / C X$ $=\mathrm{c} \cdot \sin \left(\mathrm{B}+30^{\circ}\right) / \mathrm{b} \cdot \sin \left(\mathrm{C}+30^{\circ}\right)$, so (Ceva) $\mathrm{Ap}, \mathrm{Bq}, \mathrm{Cr}$ concurrent.
16.1 The particular points may be immediately verified from the definition; for example, the vertices of the pedal triangle of the ircumcentre are $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and $\mathrm{AA}^{\prime}, \mathrm{BB}^{\prime}, \mathrm{CC}^{\prime}$ are concurrent. For example, the medians $\mathrm{AM}, \mathrm{BM}, \mathrm{CN}$ meet the sides at $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}$, C^{\prime} and the perpendiculars to sides at these points are concurrent
16.3 If P is on the first curve, then $A X, B Y, C Z$ are concurrent at Q the isotomic conjugate of Q, namely Q^{\prime}, will be such that $A Q^{\prime}$ $\mathrm{BQ}^{\prime}, \mathrm{CQ}^{\prime}$ meet sides at $\mathrm{X}^{\prime}, \mathrm{Y}^{\prime}, \mathrm{Z}^{\prime}$ and the perpendiculars to sides at these points meet at a point P^{\prime}; since $B^{\prime}=C X$, etc, $P^{\prime} X^{\prime}$ is image of PX in mediator of BC , ie P^{\prime} is image of P in O .
16.4 For example, if P is the image of A in $B C$ then its isogonal conjugate P^{\prime} is such that $\mathrm{P}^{\prime} \mathrm{BA}=180^{\circ}-\mathrm{B}$; so $\mathrm{AP}^{\prime} / \sin \mathrm{B}=c / \cos \mathrm{A} \Rightarrow$ $\mathrm{AP}^{\prime} / \mathrm{AO}=\sin \mathrm{B} \sin \mathrm{C} / \cos \mathrm{A}=\mathrm{AP} / \mathrm{AH} \Rightarrow \mathrm{PP}^{\prime}$ parallel to OH.

