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HOW TO USE THIS BOOK:

This is a book about problems, and about solving them. The
problems are only rarely original. Some are of painful antiquity.
We are in no sense authors, merely editors.

The book has come about because of something special that happened
at some of the Open University's 1975 residential Summer Schools at
Stirling University. There seems to be no good reason why the
ideas behind this book should have shown fruit when they did. What
happened could have happened at any time, or in any place.

What happened was CHEZ ANGELIQUE (at an earlier time, Club Kassab) ;
This was simply a mathematical nightclub - . a cross between a
cabaret-act and a folk-club perhaps. Tutors and students alike got
up from the floor to present their puzzles. The range was enormous:
mathematical puns, logic 'quickies', problems without solution,
research problems from the frontiers of mathematics.....

Best of all was the enthusiasm - students left the bars early to

be sure of good seats. The room was never less than full, and
nightly people were turned away. People fought to get in, and stood
at the back of crowds to hear the words without the actions.

In the last week of all, many students who had been invigorated (or
intoxicated?) by recreational mathematics begged us to put the
problems into some more permanent form. This we have tried to do
in the present volume

We should have liked to have forced readers to try to solve (or to
resolve) each puzzle for himself. The simplest way to this end
would have been to have omitted the answers! We recognise that
this might not be to everyone's taste, however. But to try to
encourage you to see these problems as a challenge, we have adopted
certain conventions of typography and layout, listed over the page.




Problems and puzzles are presented, in a continuous §§-
beginning on page 5, in this type face.

Answers and solutions are to be found following page 42, ordefed as the
problems themselves, and in this type face. A page-number reference to
the solution of a puzzle is to be found in the CONTENTS.

. A number of articles, descriptive pieces &c are to be found,
interspersed with the puzzles. They appear in this distinctive
type face, in order that they may not be coanséd with the
problems.

Most puzzles are accompanied by a short comments; frequently the comment j
- includes a hint or hints, either explicitly or disguised in a horrible
pbun. The editors take some pride in the grotesque nature of these puns.
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VOKEL !

On these four cards

2 B A 3

I guarantee that you will find one side printed with a letter, and

the other with a number. Imagine, if you wish, that this fact has

been independently verified by someone that you trust.

I now make a claim - which may be either TRUE or FALSE.
T claim that on the back of a VOWEL, you will always find
an EVEN number.

PROBLEM: EXACTLY WHICH OF THESE CARDS MUST YOU TURN OVER AND
EXAMINE IN ORDER TO VERIFY OR DISPROVE MY CLAIM?

This is best done with a group of people. First find out how many cards each
person wishes to turn over. Then get the most vociferous pair with different
ideas to argue it out! But don’t be sure that YOU are right =--there is more
than one answer!

If VOWEL! has given you a taste for this style of 'experiment', try this:-

SQUARES. & CIRCLES

1 haVa here four cards, each with a symbol on as shown in the

‘diagram below. I alsc have :a £ifth card, on which one of the

four symbols is repeated,.

u o O O

a black square a black circle a white circle a white sguare

The fifth card is hidden. So that you can relieve yourself of the
nagging doubt about what is on the fifth card, I am willing to answe)
questions of the form "Does it agree (in colour, shape or both) with

the black square (say)?" Unfortunately, there is only time for one




question - let us suppose that you have indeed asked "Does it agree
with the black square?". My answer is "Yes"

PROBLEM: CAN YOU PREDICT, ON THE INFORMATION SO FAR, ANY CARD TO
WHICH I WILI. ANSWER NO?

With this sort of problem, there is little value in immediately analyzing the
situation precisely. What is interesting is analyzing the difference between
people who reason intuitively, and those who reason deductively

PGLITICIAN'S PROMISES

Here are 5 numbered statements:-

: One of these statements is false (i.e: exdc'tl,li one)
: Two of these statements are false

1

2

3: Three of these statements are false
4: Four of these statements are false
5

: Five of these statements are false

PROBLEM: WHICH OF THE STATEMENTS ARE TRUE?

This problem can be a useful insight into the way in which a correct statement of
a problem can almost write the solution for you, Looking at things from the
other way round is almost always a useful mathematical technique.

HOW TO GET EVERYTHING WRONG - oR: YOU CAN CONFUSE ALL OF THE PEOPLE
SOME OF THE TIME!

I was going to invite ten people to a party (a rather quiet affal

I wrote individual invitations, then
all the envelopes. I then; poured out
a quick drink for myself,’ and went \
to buy the stamps, stopping off o’ | :
way in the pub. On the wny blck, % mat
i d A o X
a friend, and we had a quick pinﬁ T
P “WJ i W
two together.....

TN RS T B

RSN F AR AL R R 8]

Next morning, I rémembered, through the painful haze, that on
coming home I had put the invitations into the envelopes and

posted them. However, such was my state of ﬁind that I must have
put them in quite randomly, though I'm pretty sure that I would not

have put more than one into any envelope.

PROBLEM: WHAT IS THE PROBABILITY THAT ALL THE INVITATIONS WENT INTO

THE WRONG ENVELOPES?

A good friend of mine entertains on a more lavish scale; he invited

a million people to his party, and the same misfortune befell him.

PROBLEM: WHAT IS THE PROBABILITY IN HIS CASE? DOES IT DIFFER
SIGNIFICANTLY FROM MINE?

Before trying these problems, make intuitive guesses at the answers; it's always
instructive to test the accuracy of one’s intuition., Then try to find some sort
of recurrence formula, which expresses the probability for n envelopes in terms
of the probabilities for less than n. It's a good idea to calculate explicitly
the probabilities in the cases of two, three, four and perhaps five envelopes.

Use this recurrence formula to calculate the n=6 case to 4 decimal places. You
should now be in a position to make an educated guess at the general solution of
the problem. However, you will probably not be able to prove that your guess is
correct, unless you use the following set-theoretic prigfiple (called the
Inclusion~Exclusion Principle):

Suppose you have n finite sets of objects: S; S2 .... S_, but these sets overlap.
You know exactly how many objects there are in each set, and how many there are
in each intersection. (That is, you know how many objects there are in:

i NS ; in 8§ Ns, Ns; ; in S Ns; NSy ; etc). Then we have the

following formula for the number of sets in the union: Si Usg, Usgz U,,.. U s,

.

N(Sluszu 1 uSn) =zn N(Sl)

i=)

- > Ns; ns)

all pairs

+ZN(SlnSJnS)

all triples
)

+('l)n_l. N(Sl N 32 n.-u.nsn)
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DOWNING ONE'S BEER

Over here, on the right, you can see a very

welcome sight: a full beer can. By a fairly

reasonable appeal to the symmetry of the

situation, the centre of gravity of the can

plus the beer is in the centre, where it's

marked.

Now take a look at this can - a beerless can -

to which we can apply the same arguments about

symmetry, and conclude that the centre of

gravity is again in the centre.

Finally, look at the third can. Our intuition

suggests (correctly) that the centre of gravity
1s somewhere below the middle. Exactly where,

we're not too sure.

The situation suggests that the heilght of the

CG is a continuous function of the level of the

beer - a small change in the level of the beer

i results in a small change in the height of the
CG. There is thus a minimum height achileved

somwhere between a beer-full and a beer-less can.

WHEN IS THE CENTRE OF GRAVITY AT ITS LOWEST POINT?

PROBLEM:

This is a rather nice problem, not least because most people will never have
paused to consider what happens to the centre-of-gravity of the beer can ‘that r
they’'re emptying (and a good job too, we sayi). E

j It seems only reasonable to assume a uniform beer=-can (even uniform beer) and
i to neglect the hole in the top of the can.

This is the type of problem where a lack of information is suggestive; no
dimensions are given for the can, nor yet relative densities of can, beer and
air, We might guess that the solution can be expressed in a form that ls
‘independent of any of these. This by itself almost leads us to t lolution.

Howsver, the best hint is to try looking at things from anel
we could ask ourselves what properties of the CG. coul {

CHEESE SLICES

This is something of a preamble to the problem of the Hungry
Mouse. Imagine if you will, a cube made out of cheese, say
3"x3"x3". By making six cuts, as shown below, we can clearly
cut the cube into 27 1"x1"x1" cubes.
,$ However, this assumes that we shall

keep any sliced-up portions in the

6 same position relative to the large

cube. By rearranging the pieces of

cheese between cuts, it seems likely
' 2 that we shall be able to reduce the
number of cuts necessary.
PROBLEM: WHAT IS THE SMALLEST NUMBER OF CUTS NECESSARY TO DIVIDE
THE CUBE INTO 27 SMALLER CUBES?

P

THE HUNGRY MOUSE

Given the sliced cube described in the previous problem, all (all!l)
that you have to do is to show how a mouse could eat his way from
any of the outside smaller cubes, consuming a complete small cube
at a time, passing from cube to cube across a common face (i.e:
horizontally in either direction, or vertically, but not diagonally,

to consume the whole cube, finishing with the central cube.

PROBLEM: CAN YOU SHOW THE MOUSE ANY

PATH TO SATISFY THE ABOVE

The connection between these problems lies only in their use of a cube of
cheese. They call for different methods of solution, Trial-and-error will
convince you in both cases that the solutions, if any, aren't too easy to

spot.

Any hint for the Cheese Slices problem is likely to give the game away, and
the solution is a nice piece of lateral thinking. Concentrate on the fact
that knife-blades don't have right-angled bends in them!

A slightly tantalising hint for the Hungry Mouse would be to ask whether he
likes Blue Stilton or White Stilton. On the other hand, you might spend as
much time deciphering the hint as you would have spent solving the problem.




GIVE ME A NUMBER:

In fact, give me a three-digit 123 165
number, and don't tell me what
it is.

Right? Well let's make it a

little more difficult for me.

Turn your 3—digi£ numbper into

a 6-digit one, by just repeat- '123123 165165
ing the same three digité (like

either of the two examples on

the right). ‘

Now sir - and you madam - please 123123/7 165165/7
divide your -respective 6-digit = 17589 = 23595
numbers by SEVEN. There will be ’

NO remainder.

What? Not a single remainder out

of all 120 people at the Summer

School, Let's try again. All of 17589/11 23595/11

.you divide your quotient by the = 1599 = 2145

next primé - ELEVEN. There will be
NO remainde:.

Double or quits, I hear you cry?

Very well - divide that last quotient

by THIRTEEN. There will be NO 1599/13 2145/13
remainder. = 123 = 165

PROBLEM: WHY ON EARTH NOT?

This is one of my favourite 'quickie' problems. Favourite because it can be
performed with an audience of any size - the larger the better - with a very
convincing line of patter. And also because of one or two features that will
be better discussed after you've worked out how it all happens.

-10~

NEW VIEW

On going back to my room after Chez Angelique I found myself tripping
over objects in the dark. All I managed to see was a shadow as I
bumped into it. After the collision I would get a second view of it.

Your problem is to reconstruct the object.

side

top side *

top front side

If you haven't seen these before, they can be very frustrating. Once you look at the
solution however, the problem 1s never the same again, unlike others where you can
forget the solution!




THE AMAZING MANSION MYSTERY,

I want you to help rescue John Mason. He is trapped in a large mansion
built by an eccentric millionaire (who acquired his fortune touring
the country auctioning pound notes). All the rooms in the mansion are
circular. They are connected by passages and since the doors between

the rooms and the passages have handles on one side only, it is possible’

to walk down each passage from one room to another in one direction
only. Any number of passages can lead into a room but only two passages
lead out of each room. Thus when you enter a room and look round it
clockwise, one of the exit doors appears to the left of the other.
(Of course, which door is the left hand exit may depend oq which
door you enter the room by). The mansion has only one exit but there
is at least one route to the exit from each room.

At pfesent, John is in one of the passages about to enter a room.

He has managed to send me an S.0.S. message on a short wave radio
set, but now the transmitter has given'up“and he can only receive
messages. In any case he is so befuddled by ruéhing around trying to
escape that he is no longer capable of recognising whether he has
entered a given room more than once, and the only instructions he is
capable of understandihg are those telling him whether to take the
left or right hand exits from rooms as he comes to them.

Fortunately the millionaire EXIT
consulted me when he was
building his mansion and
so somewhere in my desk
is the plan. (An example
of what it might look-
like is shown alongside.)

PROBLEM: CAN I SEND'JOHN ' = = -
A FINITE SEQUENCE OF '
INSTRUCTIONS SUCH AS
"LEFT,LEFT,RIGHT ,LEFT"

THAT WILL GUARANTEE TOQ

GET HIM OUT OF THE MANSION
WHEREVER HE HAPPENS TO EE

IN IT?

So I a@7looking for a method that would enable me to construct such a universal
eéscape instruction I, I2.cseevses,I where each 'I' is either "left" or "right"
from any possible plan of a mansion.

(Try first to get a universql escape instruction for the plan shown, then look
forAa general method). . :

I have bad news for anyone who manaéed to find such a method.

On looking in my desk, I f£ind that the mice have been at the plans
and they are now illegible. Clearly, not knowing the plan of the
mansion, I can no longer find a finite sequence of instructions
which will guarantee escape. ( Since given. any such finite sequence,
it is easy to construct a plan of a mansion and a starting point
such :that following this sequence will merely take you back to where
you started from,)

However, the problem now is: CAN I GENERATE A POTENTIALLY INFINiTE
SEQUENCE OF INSTRUCTIONS SUCH THAT WHICHEVER MANSION JOHN IS IN'AND

WHEREVER HE IS IN IT, BY FOLLOWING THESE INSTRUCTIONS HE IS BOUND TO
REACH THE EXIT EVENTUALLY?

THE WORM ON THE ROPE,

You may be forgiven for not having spotted the rope stretching
between the University of Stirling and the Wallace Monument, lkm
away. Consider a mathematical worm (that is to sfy, a point worm,

of negligible mass and doubtless light and inextensible as well -

all we really need for this problem is that he's a point!).

The worm?Begins to crawl, at a speed ofylcm/s»along'the rope.

After 1 séééhd, énd after every éubsequent second, malevolent fate
chooses to take a hand, At the end of each second, the rope is
stretched, uniformly throughout its length, to add lkm to its length,
Thus, after 1 second, the rope instantaneously becomes 2km long,
after 2 seconds 3km and so on.

Hanging on with grim determination,
the worm finds himself moving as well.
While the distance yet to go has

clearly, increased, he has been moved
forward by the stretching as well.

PROBLEM: HOW FAR CAN THE WORM GET ALONG 'fHE ROPE? ALL THE WAY?
HOW LONG WILL IT TAKE HIM?

-13-



While an interesting exercise in mathematics, this is a poor rccreational
problem; the situation is so heavily weighted against the worm, who seems

to stand no chance at all of ever making it to the end, that clearly he MUST
make it! Otherwise the shock to our intuition that characterises the best

of problems would be missing. But it is very dangerous in mathematics to
accept solutions on the grounds that they are merely plausible, and hence
doubly dangerous to accept solutions that are implausible. You and the worm
both won't get very far if you think about distances. A different perspective
will give you a fractionally better chance. The Monument is irrelevant,

THE WORM THAT DIETH WOT....?

In the worm problem, the rope suddenly expands by 1 km. at the end
of every second. A more realistic situation (well slightly more
realistic!) would be one in which the rope still stretches by 1 km.
per second, but in a continuous and uniform manner. (Imagine that
the end of the rope at which the worm starts is fixed, and the other
end has a uniform velocity of 1 km. per second away from the fixed
point.) : A

Clearly, in this discrete case, the worm's arrivéi at the end of
the rope is something of a cliff-hanger, in that the series

1+ 1/2 +1/3... is "only just"divergent. Could it be that the
passage to the continuous case dooms the worm? . .

PROBLEM: DOES THE CHANGE IN THE MODEL CHANGE THE CONCLUSION ?

If you succeeded in doing the 6riginal problem, and you also know how to set up
and solve a first-order differentlial eguation, then you should have no difficulty
with this variations.:

A problem isn't golved wntil
you've successfully explained'

the solution to someone else.

-14~

‘DOTTY

Can you draw four straight lines, without removing pen from paper,
so that exactly one line passes through each of the nine crosses

in this diagram?

X X X
X X X
X X X

PROBLEM: WELL, CAN YQU?

This problem has been around a long time, and deservedly so; it is a repeated
warning, every time it appears, to would-be mathematicians that it is always
dangerous to assume more than you are told. In exactly the same spirit, but
discriminating against the novice without a solid fbundatlon in mathematics, is
the followingeee.

NEEDLE MATCHES

You are given just six matches, all the same, length:

PROBLEM: ARRANGE THE MATCHES TO FORM EXACTLY FOUR EQUAL-SIZED
EQUILATERAL TRIANGLES?

Imbued, as you will be by now, with the spirit of not assuming more than you
are asked for, please find the following:

PRIME CUTS

PROBLEM I: FIND A FORMULA GENERATING ONLY PRIMES

PROBLEM II: FIND A FORMULA GENERATING ALL THE PRIMES

-]§-




THE INDUCTION GAME

This game is concerned with infinite sequences of positive integers.
I have in mind a certain property which such sequences may or may
not have. All I will tell you about it is that there are infinitely
many- sequences which have the property, and also infinitely many
that do not. For example, the property I have in mind might be

one of the following:-

l: Each term in the sequence is divisible by 4.

2: Each term in the sequence is larger than the previous

term.

Your job is to try to guess the property that I have in mind. To
help you guess, you can try to build up a sequence having the
property that I am thinking of. Each time you suggest a number that
is permitted by the property, I will add ‘it"to the'end of the

sequence, and to help you remember I will w;ite below each term

‘ numbers which have been éuggested, but which do not satisfy the

“ property at that point. Suppose that the suggestions have gone as
follows:

Is e [ 3115 J1n1l12]7 17 =

numbers 4 7 4 3 4 15
not 8 8 2 314
allowed 9 ) 7
' 8
10

PROBLEM: CAN YOU GUESS WHICH PROPERTY I HAVE IN MIND?

This "Game" genuinely uses inductive rather than deductive reasoning; it also
appears as the game of Eleusis, which has had a well-deserved airing in the
pages of Scientific American, invented by Robert Abbott. We would encourage
you, not merely‘to solve this single puzzle, but to try the game out for
yourselves.

THE GOOD DIE FIRST

A and B are fair dice. That is to say, when you'roli Eheﬁ; each of

their six faces +4is as likely to come up as any oﬁfthe pth.rs.
However, they differ from normal dice, in that they do not have

-16-

distinct numbers on each face. In fact, the numbers on the dice

are:

=2 4

1,"62 2/4

= 2/

W2

We each take one of these dice and play the following game. We
each roll the die we have taken. The player who rolls the higher
number receives'10p from the other player. (In the event of a tie,
no money changes hands.) If we play this game over and over again,
which of these two dice would you rather play with? ~Try and arrive
at an intuitive judgment without making any calculations.

In fact, the calculation is not difficult to make. We need only
draw up a table of the 36 possible outcomes (all different and

equally likely) and indicate who wins in each case.

DIE A
6 6 3 2 1 1

@ W w

DIE B

NN R R

o P o oy

.

o oy ww w
!

W w w w o w

W W ww ww

We see that A wins 15 times, B wins 18 times and there are 3 draws.
Thus, on average, in every 36 throws die B will win 3 more times
than die A. So B's long-~term advantage is 1 in 12 or 8.333...%
Note that this is despite the fact that the total of the numbers on
A is higher than the total of numbers on B.

I also have a third die, C. C is also a fair die and it has
exactly the same advantage over B that B has over A. That is, on
average, in every 36 throws, C will win 18, B will win 15 and there

-17-
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will be 3 ties. So again, C's advantage over B is 8.333...%

PROBLEM: WHAT IS C's ADVANTAGE OVER A?

The point of the problem'is that it is not clear how to combine the two sets of
data in order to compare C with A. The correct method might be simply to add
the two percentage advantages and thus deduce that C has a 16.666...% advantage
over A. Alternatively, you might take account of the fact that C wins half the
time against B and B wins half the time against A. ‘Combining these, perhaps C
wins all the time against A and so has a 100% advantage over A. Or perhaps
there is some other method of getting to the answer?

THE STRANGE AUCTION

I have here a £1 note. I intend to auction this note under the
following bizarre, but not superficially impossible conditions:

1: Everyone participating must make a bid on each
round of the bidding, or else drop ouﬁ,for>§ood.

2: When the bidding stops - when no one else wishes to
bid - the last person to bid collects the £l.

3: Unusually, the person collecting the €1 1s not asked
to meet his bid, but rather the previous two bidders
must meet theirs. -

For example, i1f the last three bids are:

Fred: 95p
John: £1
Alan: £1.05

and no-one else wishes to bid; then (unless Fred wishes to up his
bid and so on) Alan collects £l1, and Fred pays 95p and John pays
£l. Alan's £1.05 is a purely nominal amount, which he is not
asked to pay - unless that is, the bidding goes further.

PROBLEM: WHY WOULD YOU DO WELL TO AVOID THIS AUCTION?

"The joy of being present at wq 0&
the golution ig worth all the 'S«P GQ
. I Q
frustrat T AV
Frustration that precedes it o o V@
N Nﬁ,@Q
X @
o
¢° AN éﬂp ]
6\05‘ W fsaﬁ’ YA problem presents itself ~
N“‘Q xz""ge‘ Q¢° it must be solved. There's
'\)q,&‘\ o,\,w"’ Y;,\;(@ a nagging curiosity that won't
o
xp dﬁ go away'.
N
© -18-

MY FAIR LADIES

One of the delights of a Summer School - at least, the newspapers
would have us believe so - is the profusion of pulchritude.
Shortly, a new style of beauty contest is going to begin. Along
this passage will pass TEN beautiful ladies. YOU are going to
choose just one of these. The :
rules governing your choice are
extremely simple: as each lady
passes you must decide whether
to TAKE her or REJECT her. If
you take her, then irrevocably
she is the one for you - even
if the remainder of the ten,
previously unseen, all turn
out to be the more desirable.
Likewise, if you reject her,
you cannot subsequently change
your mind, even if the unseen

beauties all turn out to be

less than desirable.

In order to make all of this a little bit more manageable, let

us assume that 'desirability’ may be represented by a positive
real number - a 'score' as it were. As each 'score' is offered to
you, you must decide then and there whether to take that score or
to hang on in hopes of a higher score. It seems unnecessary to
say that you may only take one lady!

PROBLEM: WHAT STRATEGY SHOULD ONE ADOPT IN ORDER TO ACHIEVE THE
BEST RESULT ON AVERAGE?

This is rather a nice problem, and not at all an easy one to solve. Firstly,
it isn't at all clear what is meant by the "best result”. You must decide in
your own mind whether the object of this rather artificial (but nonetheless
reminiscent) game is to win or to try and maximise your score. The use of
strategies, and the notion of 'on average' both suggest that the game will be
played, in theory at least, a large number of times. Being a good second each
time could be a viable strategy in the second case, but would be useless in
the first where you are 'going for the gold' all the time.

The problem is that whereas initially you can be absolutely sure that the
best woman (highest score) is still to come but you have no idea what sort
of scores are likely, at the end of the game you know exactly what sort of
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scores there were but you arl;lblalﬁtolv sure that the best woman has already
gone. Compromise is indicatod.

There are several entertainitig’alternatives to this problem. You might like
to investigate strategles that you would choose if you:
X : . [t
&) knew that scores lay betwsen 0 and 1000 only
b) didn't know how many women were coming
¢) didn't know how many women were coming, but knew
that there were at least 10

’

For those unable to cope with the detailed mathematics, suggest a strategy

in general terms; for those with & more practical bent, try a computer simulation.

SUGAR, SUGAR

They may be canny in Scotland, but they sure are peculiar! I was

in Stirling, buying 2lbs of sugar, the other day, when I noticed

that the shopkeeper was using a variant on the chemical balance -
the variant being that the pivot was most definitely not in

the centre:

i

However, my initial distrust was somewhat allayed when the

shopkeeper weighed me out 1llb by balancing the weight in the left
with the sugar in the right, and then added to it another 1llb that
had been weighed with the sugar in the left and the weight in the
right:

v e ~ \[\_.. & - Jb

PROBLEM: WHO PROFITED: MYSELF, THE SHOPKEEPER OR NEITHER OF US?

This problem hardly takes a moment or two to solve, once you've seen how to do
it.
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DON'T KEEP ME HANGING ABOUT.....

(The Editor has been dying to use that title ever since, at the age of 11, he
played the Hangman in the School Play and had only a one-line speech)

I once found myself in a gaol in an unmentionable country in a
state of political unrest. I was put in a cell for two people,
and there were two other single cells. Each day, three prisoners,
guilty of some terrible crimes, were brought in, one to each cell.
They were told that exactly one of them had been pardoned and that

the other two would be hung at dawn. The first time this happened,

I fell into conversation with my temporary cell mate, and he

argued as follows:

"There is an equal probability that any one of us three poor souls
has been pardoned, so my chances are one in three." I was convinced.
When the guard brought our evening meal I asked the guard which of
the three was to be pardoned. The guard replied that he was not
allowed to reveal any information. My friend then pointed out that
since at least one of the other two would be hung, the guard could
safely tell us ©one name - and he did. My friend then turned to

me and said "Aha - there are now just two of us so I have a

fifty-fifty chance of being the pardoned one."

On reflection, it seems that he was not given gny information, and
yet his probability of being pardoned changed

PROBLEM: WHAT DO YOU THINK HIS CHANCES WERE?

A careful prescription of the sample space will reveal that a conditional
probability is being calculated here, and a hidden probability is being varied!

~1 solved the problem,
=The solution came to mes3
-1 Participated in the

problem solving itself,




THE FIFTEEN GAME

One day, a great panjandrum came to the village. When he discovered

This game is played between two players. Nine cards bearing the the state of affairs in the village, he gathered together all the

numbers from one to nine are placed face up on the table:-

5][¢e]

The players take it in turns to choose the cards. You win as soon *
as, among the cards you have chosen there are three whose numbers
add up to 15. For example, if the play proceeds as follows:

inhabitants and made the following announcement:
"I regret to tell you that there is at least one unfaithful wife
in this village." After this, he/left hurriedly.

Now therebwas a law in this land, that when a man discovered his
wife to be unfaithful then, before the next midnight, he‘had to kill
her. The penalty for breaking this law was so horrible that the law
was always obeyed, but since the same penalty was applied to those
who killed their wives withbut knowing them to be unfaithful, no-one
ever killed his wife without knowing for sure that she was unfaithful.
PLAYER I: 2, 8, 4, 9
PROBLEM: WHAT HAPPENED IN THE VILLAGE AFTER THE PANJANDRUM MADE
HIS ANNOUNCEMENT, AND WHEN?

PLAYER II: 5, 6, 3

then player I wins, because as soon as he chooses 9 he has three
numbers which add up to 15 (= 2+449) : ; ;
It is necessary to know that, not only was each man in the village an excellent
logician, but also that each knew all the others to be excellent logicians too.
Thus you may assume that the happenings in the village after the announcement
were determined by strict logic and did not occur in any random or haphazard
fashion.

You will notice that all the husbands of the unfaithful wives knew all the time
that 39 wives in the village were unfaithful. So the panjandrum's announcement
that there was at least one unfaithful wife could have come as no surprise,

Since it seems that it added nothing to what they already knew (or did it?) it
would seem that the announcement would have no consequence$, and that the village
would continue with its previous happy ways.

If this solution does not satisfy you and you think that the conseguences might

Try playing this game a few times, and see if you can work out a
good strategy for the players. The real problem with this game is,
however: ’ '

PROBLEM: HAVE YOU EVER PLAYED IT‘BEFORE ?

This is a good example of how an unfamiliar situation, when looked at in the
right way, can resemble something very similar to everyday cxpcrience. A great
deal of mathematics is just this: a tool, invented for quite a different purposc,
can be seen to have a new and different life.

have been more dramatic, you might find the following two questions helpful in
tying to work out the answer:

Is there any symmetry in the problem?

Is there a similar, but simpler, problem which you can solve?

These guestions are, of course, among those you should always ask yourself if you
are faced with a difficult problem.

THE FORTY FAITHLESS WIVES More than any other, this was THE problem of Chez Angelique. Apart from the amounts
of brain-power expended on it, it is memorable for the man who reduced it to the
much simpler case of one married couple, and concluded that the wife had no-one to
be unfaithful with!

|
In a far away country, there was once a small village, and among the
married couples in the village, exactly forty wives were unfaithful

to their husbands. Gossip in the village was rife, but it was an
inflexible rule that a husband was never told about the unfaithfulness NUMBERS ON THE BRAIN
of his own wife. As a result, all the men in the village knew, for
all the women in the village, other than his own wife, whether or not Algernon and Bartholomew are seated, facing each other. Each has a
she was unfaithful. piece of card attached to his forehead on which is written a positive
integer. They can see each other's number, but not their own. On a

blackboard which both can see are written two positive integers.
-22-
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They know that one of these numbers is the sum of the numbers on
their foreheads, but they do not know which it is. They take it
in turns to ask each other:

"Do you know the number on your forehead?"

PROBLEM: WILL IT ALWAYS BE THE CASE THAT ONE OR OTHER OF THEM WILL
EVENTUALLY BE ABLE TO ANSWER "YES" TO THIS QUESTION?

Notice first that they both know that the sum of their numbers is larger than
either of them (positive integers). So as soon as one of them knows that one

of the numbers on the blackboard is smaller than (or equal to) one of the numbers
on their foreheads, he can deduce that the other number is the sum (and hence
deduce his own number).

This problem is similar to the Forty Faithless Wives, since Algernon & Bartholomew
are able to make deductions not only from what they can see, but also from the
answers of the other.

Once again, it may be helpful to think of a specific, simpler, case, say A=4,

B=7, and the numbers on the blackboard are 11 and 15.

THE PERIPATETIC MONK

A monk began one day at sunrise to climb up a mountain to a retreat
at the top. He went quickly at first, but as the day wore on he
slowed down, finding the sun hot and the path increasingly steep. At
noon, he rested by a stream for a while, and then set off again.
Taking more and longer rests, he just made it to the retreat at
sunset. A week later, refreshed by

his period of silent contemplation,
he headed joyfully down the same
path. This time he stopped
occasionally to view with

new eyes the wonderful

scenery he had overlooked

on the way up. At sunset

he reached the foot of

the mountain,

PROBLEM: MUST IT BE THAT HE WAS AT THE SAME POINT, AT THE SAME
TIME ON BOTH THE UPWARD AND THE DOWNWARD JOURNEY?

YES - obviously! This sort of puzzle doesn't get asked unless the answer is 'yes'.
Which is a pity, as the solution is a delightful piece of discovery. The next

two problems are similar in solution: you may elect to solve the PERIPATETIC MONK
first of all, and see if you can easily apply the same techniques, or alternatively
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try reading through all three of the problems to try to identify what they have
in common. As with many similar problems, a new twist will help.

BALANCING ACT

I have a two-dimensional balance which must be placed absolutely
level on the table in order that its mechanism can work properly.
Unfortunately, my flat table is perfectly steady, but on an

uneven floor.

PROBLEM: CAN I FIND SOMEWHERE TO PUT IT ON THE TABLE, SO THAT IT
IS LEVEL?

TRIPOS PROBLEM

Although the edges of my sitting room are perfectly level, the
floor has heaved a bit, and is anything but level.

PROBLEM: IS IT POSSIBLE THAT I CAN GET A THREE-LEGGED STOOL TO BE
PERFECTLY LEVEL ANYWAY?

It will be a mistake to spend so long attempting to identify the connection
between these three problems that you make no serious attempt to solve them.
The connection is strongest between the latter two.

ORANGES anp LEMONS

A farmer is taking three crates of fruit to market. One contains
oranges, the second contains lemons and the third contains a
nmixture, However, his small son has switched all the labels round,
and has issued a challenge that his father should re-label all
three crates correctly, by picking out just ONE piece of fruit,

from just ONE crate.

PROBLEM: WHICH CRATE SHOULD THE FARMER CHOOSE FROM?

It is rather too easy, in the Oranges and Lemons problem, to forget the most
useful piece of information that you have!

-25-
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HAND OVER HAND :
A QUESTION OF LIFE & DEATH

This problem—cemas ihfﬁbal?ﬁkﬁ'of & game involving communication.
The . rules are as followsi

"L e I i i £ will, findin ourself in the following (unlikely,
(i) There must be at least two players, magine i you ’ ¥
(ii) No one may use their hands to draw, write

or gesticulate.

but plausible) predicament:

Weary of European decadence you decide to emigrate to Australia;
your plane lands first at Perth, but you intend to continue your
journey to the Eastern states. Unfortunately, between Perth and

The question is: "how many different pieces can be formed by
glueing up to FOUR little squares together edges to edges?”
The rule of combination allows squarss to be glued thus:

Adelaide the plane crashes. YOU are the only survivor. It is the

middle of a moonless night.
Suddenly, the silence is broken by the whistle of a train!

but not thus:

After each person has made an estimate, the players take it in
turn to announce and describe (without using hands) a new shape,
thus building up a dictionary of names and descriptive adjectives.
‘ It is, of course, no use just making up a new name: ths notation
| must be compatible and you must be able to indicate (from memory)
1“ why your shape is different from everyone else’'s.

SEE

/ DETAHIL

PR ST

'
iNULLRRBvQ:

Oh - what does DIFFERENT mean? The players daecide that as they
go along. '

= Communication demands that we choose words which are eppropriate to
g to the listener. 1In this case, a nsw word must gain acceptance
before it passes into gsnsral uss. The process is similar to

the process of concept formuletion. Having tried 4, try 5!

ADPELAIDE

As the ’answers' ars not really relevant to an experiment in
communication, we give ths numbsrs and shapes for the cases 1 to
5; rotations and reflections are not considered 'different’

L] EDEEB

DETAILED MAP oF NULLARBOR PLAIN

| |
o = == o |
I
{ |
i |
I l _J J : e e e e P |
[ You must not assume that civilisation is near at hand. Your plane
l ] _J has crashed in the Nullarbor plain. A glance at the map will reveal

that the Nullarbor Plain has only one geographical feature - 300 miles

~26—
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of perfectly straight railway line. The train driver was not
whistling at a level crossing =~ he was simply expressing his

delight at the prospect of a further 150 miles of perfectly straight
railway line across the perfectly flat and perfectly waterless
Nullarbor Plain, ‘

You have no water, and trains across the Nullarbor are infrequent.
Your only chance of survival is to reach the railway line and to
stop the train you have just heard. "oy
Admittedly, your prospects are not bright: the whistle was too brief
to enable you to judge the direction in which the train was moving,
but you have managed to fix the direction from which the sound came.
Of course, the plane crash has left you somewhat disoriented and so
you have no idea which direction is North, and the unfamiliar stars
of the Southern hemisphere are of no help. It is reasonable to assume

that the train is moving faster than you can walk.

PROBLEM: IN WHICH DIRECTION SHOULD YOU WALK TO GIVE YOURSELF THE BEST
CHANCE OF LIVING LONG ENOUGH TO TASTE BEER THAT HAS LURED
YOU HALF~WAY ROUND THE WORLD?

To catch the train, you must arrive at some point before the train reaches that
point. If you walk directly away from the sound, every point you reach will have
the property that you reach it before the train does! Assuming, of course, that
you are not actually standing on the line = which highlights one aspect of the
problem that confuses most people: you are not searching for a cast-iron solution.
At best, you are looking for the strategy that will maximise your chances. On the
surface, they seem pretty slim whatever jou do. Even if you were on the track,
which seems like a best case of some sort or other, there is only a 50-50 chance
that the train is not moving directly away from you

CORRECTION, ...

The publishers of Chez Angelique wish to apologise: they were not
100% accurate in describing the Nullarbor Plain as featureless - on
the other side of the railway track described above in A QUESTION OF
LIFE & DEATH, there is a strange, ancient ruin, consisting of two
high walls running at right angles to each other from a corner.
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The inside has recently been purchased by a rich linoleum tile

merchant, who is also a chess addict.

He has arranged for.the inside area to be tiled altérnately black-and-
white, infinitely far in both directions. Of ‘course, the Nullarbor
Plain is not in fact infinite, but like most of Australia it seems
like it! As a challenge to the desert
wanderer who comes across these

ruins, he places a rook in the

corner and & king on some (known)
square. The moves of these two

pieces remain substantially as

they are on finite boards - the
rook may move any number of squares
horizontally (or vertically) in a-
single move, and the king may move
only a single square (hérizontally
or vertically). Neither piece may

move diagonally. By virtue of the
rules for taking pieces in chess, the king may not move onto any square
which is in the same row or column as the rook, and the rook may not
move adjacent to the king. Except diagonally, that is.

PROBLEM: THE KING IS "CAPTURED" WHEN NO MOVE IS POSSIBLE - CAN IT
BE"DONE? ' '

If it can be done, give an explicit algorithm for the rook. If not give an
explicit algorithm for the king to escape.

As a Chez Angelique problem, this was notably unsuccessful: in style, it is a
problem that benefits from having a chess-board, and playing around moving a few
pieces. Nonetheless, it is an excellent problem on which to cut 'collective'
problem-solving teeth. The problem apparently has its origins in computing

circles, as does our next one. 29




FAMILY TREE" S

Each of us, OU staff included had two parents, four grandparents and,
in general, 20 ancestors, n generations ago. Although this sets an
'upper bound' on the number of ancestors at any given time, clearly
the rate of'growth of 2" indicates that not very far back into the
past, due to intermarriages, we shared a common set of ancestors.

All of which makes something of a nonsense of those people who would
claim a pure-bred descent from notables in the past. However, the
problem is not about how many ancestors we could have had, but about

how FEW!

For the sake of some structure to the problem, let us assume, rather
unrealistically, that all marriages have always been within the bounds
laid down in the table of 'kindred & affinity' in the book of Common
Prayer. Men, for example, may not marry their widows' mothers. (Think
about it!)

PROBLEM: WHAT IS THE LEAST NUMBER .OF ANCESTOﬁS THAT ONE COULD HAVE HAD
ALIVE AT ANY ONE TIME, SAY 200 YEARS AGO?

A strict solution of the problem hinges on the preciseé definition of alive. A4 lot
may be accomplished by consideration of babies nestling in wombs before birth. In
fact, such linguistic tricks don't add much to the broblem, and you can set what
limits you wish on the definitions, and mark yourself accordingly. Note that you
may have no living ancestors, yourself, which is why we set it some centuries back.
More usefully, remember that marrying immediately adds to your children's ancestry
any living ancestors on the distaff side of the familyeeaeas

Not entirely a trivial question, is the following:

PROBLEM: AFTER THE SITUATION OUTLINED IN FAMILY TREE, WHAT HAPPENED?

Nor, surprisingly are these two:

PROBLEM: = WHAT IS THE AVERAGE NUMBER OF FINGERS IN YOUR FAMILY (after

the events of Family Tree)?

PROBLEM: WHAT IS THE CHANCE THAT THE NEXT PERSON YOU MEET HAS AN
ABOVE AVERAGE NUMBER OF ARMS?
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ON UN_DEkWEAR, STRING AND HUMAN BODIES

To a topologist, human bodies are rather dull objects, being
rather less entertaining than a doughnut or a pretzel. In

fact, the topologist sees all human beings as roughly spherical
lumps - odd protuberanceés like head, limbs &c are of no

interest and can happily be removed. .0f course, not everyone
has this unnatural view of humanity. Indeed, many who have made
a contribution to society have made reputations ‘by a careful
study of just those protuberances that the topologist so care-
lessly amputates. These latter people are properly described as
geometers and among them we find the inventors of the strait-
Jjacket, handcuffs, leg-irons, the thumb~screw, the rack and the
guillotine, ’

The géometry of the human body can provide us with a number of
amusing problems. Most of them become more amusing if attempted
in front of a small audience prepared to make helpful suggestions.
For example, various items af upderwear can be removed without
removing cuter garments. Most
women know that this can be
done with a bra - it is less
well-known that a man can
remove his vest without taking
off his shirt, although he
will probably have to unbuttan
his collar and cuffs.

Unable to find a young lady
willing to divest herself of

a bra, even underneath a dress,
while CHEZ ANGELIQUE looked on,
but sparing np expense to make
this volume complete, we have

Before your very eyes on this
and the following pages, we
show you that IT CAN BE DONE

Problems that involve more than one person can be devised if we
allow the use of some string. Take two pieces of string about

4 or 5 feet long and two volunteers. " Tie the wrists of one
volunteer together to resemble a pair of handcuffs - that is, a
loop about each wrist (too small to slide over the hand, but not
so tight as to restrict circulation) and a long piece of string
Jjoining the two loops. Do the same to the second voluntecr, but
before tying to the second wrist, pass this string over the first
string so that the two victims are linked-together. Can the two
be separated without untying any knots?

YES: we make use of the fact that there is a small gap between
the wrist and the loop of string tied around it. A loap of the
other string can be worked through this and over the hand.
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If your circle of friends ineludes somsons who wears a waist<
coat, ask him to remove his jackat and then put his arm through
a circular loop of string (about 8 feet of string) hefore
puttlng his thumb Into his walatcoat pocket. His thumb must
remain firmly in the: pocket while the loop of string is

removed from hilg &rm., A T-shirt will serve as well as a
waistcoat if that's the sort of friend you have. Instruct

him to take hold 'of the body of the shirt after putting his
arm through the etring,

‘A variation on this last
" problem might actually
-arouse the interest of a
"topologist. Try putting
both arms through the
loop of string (from the
same side) before attach
ing the hands to the
waistcoat or T-shirt.
Putting both hands through
the loop of string and
then firmly into both
trouser pockets provides
a less interesting topo-
logical situation, but
the geometry is getting
better!

For the first version of the problem, take a loop of string
through the nearest armhole, over the head, through the other
armhole and over the hand. Now pull the string out From the
bottom of the waistcoat and down to the floor.

Two arms through the loop? The loop cannot be removed! If we
remove parts of the body and waistcoat, we sursly don't make
the problem more difficult, but we arrive at the following
situation where only the arms and shoulders and a strip of
waistcoat are left: It ig still not immediately obvious that

SR the loop cannot be removed,
but the topologists assure us
that this is the case.

»

‘”Qmﬁmﬁr

i) PRemS asd Two arms through the loop -
- SHouLpERS hands in trouser pockets?
Removing the . loop without -~
o removing the hands is straight-
LooP ofF forward in theory, but we- know
CSTRiNG of no authenticated case:-of
. the trick actually being per-
formed in public.
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WE SHALL NOT BE MOVED!

Given a chess-board, and 32 dominoes, of the dimensions' shown,
it is a relatively easy matter to completely cover the board
with dominoes. Rather more challenging is to investigate what
happens if we remove the two squares shown from the board. If
the board CAN be covered, 31 dominoes will suffice, of course.

B RO

Y,

PROBLEM: CAN WE STILL COVER THE CHESS-BOARD, EXACTLY WITH
31 DOMINOES?

B

This is a nice and relatively well-known puzzle. It is a mistake to
dismiss it as being colourless and without interest. It may be generalised
into the following, equally nice, problem:

AND AGAIN!

Suppose that the two squares removed from the chess-board were
not at opposite corners, but rather were in some general position

on the chess-board:

"PROBLEM: UNDER WHAT CIRCUMSTANCES CAN WE COVER THE BOARD WITH

OUR 31 DOMINQES?

This breaks down into two separate cases. In one, the covering is possible,
in the other it isn't. Your solution to WE SHALL NOT.BE MOVED! will help
in the one case, but a constructive proof will be required in the other.

COLOURFUL CUBES

You have a cube and six pots of paint: Red, Orange, Yellow,
Green, Blue and Indigo (What, no Violet? We're outa-violet!).
With this near-rainbow of colours, you wish to palnt your cube
with a different colour on each face.

PROBLEM: IN HOW MANY DIFFERENT WAYS CAN YOU DO THIS?
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This problem depends to an extent on what "different” means. This is. a
recurring idea in mathematics., The simplest solution, which also gives
us an upper bound for all other #olutlons, is to say that the first face
can be any of the 6 colours, but.the next can only be one of 5 colours,
and so on. In this way we get 5{ m 120 'different' cubes. Allowing more
natural' interpretations of 'different’, such as that which says that two
ways are different if one cannot be rotated into the other, gives us a-
. more challenging and more interesting problem.

DRILL AND PRACTICE

I have a wooden sphere, through which I drill a hole. The
hole is of length 2IL. o

PROBLEM: WﬁAT IS THE VOLUME OF THE REMAINING PORTION OF THE
ORIGINAL SPHERE?

The most glaring omission (for such it seems) in the above problem is that
the dimensions of the original sphere have not been given. This, by itself,
could be suggestive; the problem changes very much if we assume that there
is a solution, because new methods of solution open up. :

THE ONE-MOVE MATE

It was breakfast time at 221b Bakér Street....

"A gentleman by the name of Collings has just sent me this,
Watson. .what’dé you make of it?" “h .

Holmes passed a flimsy sheet of péper‘éckoss the breakfast table
to me. On it was sketched a
position in a game of chess.

"You may care to know that the
position is one that might
arise in play and that in
addition, White has moved

his QRP twice during the last

ten MoveS....."

There elapsed a period of some

minutes while I studied the
scrap of paper. ;
"There are no mating moves, Holmes!" I was forced to cry.

"Coﬁe ﬂow, Watson! Collings tells us that white moves and mates
in onel!" I had expected better of you than this. Perhaps you
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have not considered:
P x P e.p. mate (a5 to bé6)

"Ah yes, Holmes - an en _passant capture. I had seen that
possibility, but rejected it - -we have no way of knowing that
Black's last move was:

e P-QON4"

"Except that White does mate in a single move, and once we have
eliminated the impossible, all that remains, however improbable,
must be .... but/I expect that you are quite capable of finishing
that epigram, Watson!"

"Simple then, Holmes! There is no other possible move, therefore
White takes en passant, and wins..."

"Unless of course, Watson" said Holmes with a touch of a smile
flickering about his face, "White castled on the King~sidel"

"There are, Watson, two possible mating moves, both requiring
some knowledge of how the play has proceeded up to the present
position. There are a number of potentially useful observations
that we can make immediately” : B

"I fail to see anything useful, Holmes”

"I commend your attention to the strange affé&r of the bishop on
square fl1l, Watson"

"But there is no bishop on that square!"

"Precisely, Watson!"

PROBLEM: WHITE MOVES AND MATES IN ONE. HOW?

This problem is delightful! You will deduce from the discussion above that
the bishops on d5 and e5 must have been promoted. They clearly could not
have left their starting squares. The bishop now on square e5 can be seen to
be the promotion of a pawn that captured as it reached the eighth rank.

The essence of the problem is to prove that one of the two possible moves
must have been impossible, because of the previous game. As pointers to the
satisfactory solution, we might draw your attention to the fact that a number
of pieces have left the board. Every time a pawn moved sideways, it could
only have done so by means of a capture. Hence the pawn moves and the
missing pieces are connected.

Perhaps the nicest thing about this problem is that every piece on the board,
as well as those off it, plays an important part in the solution of the
problem. Good Luck!
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THE NON-WORLD OF THE NON-GAME

The idea of a "game” in the classic mathematical sense - an idealised,
stylised form of confliot, where outcomes and strategies may be

measured, at least in a theoretical sense - is well understood. To

some psople, this is the single most exciting advance in mathematics

Kithin our lifetimes. It is not our wish to guarrel with this idea
era,

However, as a means of provoking the reader, and providing a little
light relief from the mainstream of problem-solving, let me introduce
you to the concept of the NON~GAME.- The Non-Game defies analysis.

NON-GAME NUMBER 1: FINCHLEY CENTRAL
Two _players take it in turns to name stations on the London Underground.

The first to say "Finchley Central” wins.

Now, just in case you are not sufficiently convinced that there are any
problems at all in this game, let me ask you a question: when 'in the
best time to say "Finchley Central”? Clearly,  just before your
opponent does! The sensitive reader, and who is not, will dismiss as
uncultured any strategy that suggests saying FC right away - do as you
would be done by, after alll

Russia and America, it could be argued, are involved in a massive game
of Finchley Central - spending millions of dollars/roubles of their
taxpayers' money on sophisticated systems to ensure that they can say
"Finchley Central”, or "Armageddon” or whatever, just that fraction of
a second before the othsr.

Non-game the second is closer to our experience of reality:

NON-GAME NUMBER 2: TWEEDLEDUM & TWEEDLEDEE

Dum and Dee are approachedvﬁne day by tHa‘Red'King, who offers them
£1000 on the sole condition that they agres among themselves on how ta
divide it. Dum speaks first and argues for 50-50, Dee is slower and

more devious, arguing for a 90-10 split in his own favour: "if you
don't agree to that, Dum, you get nothing - the choice for you is nothing

Less rooted in reality, but in the same vein is:

NON~GAME NUMBER 3: PENNY POT

Players take it in turns to, either, add a penny to the pot, or take

the contents of the pot. If you take, you start next.

Work it out for yourselves - a less serious Non-Game that led to a
fascinating experiment is:

NON-GAME NUMBER 4: MISS TAKE

A number of ’'judges' view a parade of scantily-clad ’'beauty queens’.

This is just light relief, and has nothing to do with what follows,

to do with £1000: it's £100 or nothingl”

Dum is slower still, but still a mathematician: he argues in the same

words as Dee - How would YOU advise the pair?

The real answer to the problem is "with caution”. To fix it closer in
reality, let us suppose that you had developed some device that would
benefit (say) the GPO. Suppose it.saved them £1 000 000. How much is
a faii price for them to pay you? If you cannot sell it elsewhere, as
might well be the case with a monopolistic GPO, any price that covers
your development costs is profit for you. Likewise, anything up to
about £3900 000 is a worthwhile profit for them. The only merit in
50-50 is a misguided appeal to symmetry.

A similar, and equally baffling situation arises when Wynken, Blynken
and Nod get to dividing - a situation matched only by Dancer, Prancer,

Donner and Blitzen....
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when the judges all try to choose the same number as all thse other

Jjudges. No other criteria are operative, ’

As a result of musing over this 'non-game’ I once sst a class an
examination with a single question - viz: "Who will come top in this
test?”

That factors alter cases was admirably proved; Jones, let us call him,
had always come top in avery other test, so to a man the class wrote
"Jones” - except, that is, for Jones, who in a fit of modesty, wrote

"Smith"
Lastly, with no explanations:

NON-GAME NUMBER 5: FRUIT MACHINE
Players pay good money to watch some coloured wheels spin around.

Nothing else ever happens, except to someone else.”

NON-GAMES were described very readably by Anatole Beck in an article
in MANIFOLD-4, published at the University of Warwick.

WHAT NEXT ?

110, 20, 12, 11,

-

6, 6, 6, 6, .....

PROBLEM: NOT SO MUCH 'WHATS NEXT' AS WHAT'S MISSING?
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SATISFACTION!

Summer 1975 in Stirling was really incredible: those with previous
experience of the delightful campus at the gateWay to the Highlands
will know how unexpected the weeks of unbroken good weather were,
Naturally, €veryone was even thirstier than usual. Passing between
lecture and review session one morning, I chanced upon three
students on the grass. They had a large jug of beer, and a single
glass. Being totally uncharitable, and very very thirsty, they
were trying to divide the jug of beer so that each one is h
that he has a fair share,

PROBLEM: HOWvCAN THEY ACHIEVE THIS DESIRABLE END?

Once again, the problem is capable of being misunderstood; the drinkers are
not attempting to divide the beer equally, but to divide the beer into portions

that each are prepared to accept as thirds, Unfortunately, there's no way to
mark the jug, or the glass!

EUREKA !

A small boy is to be found sailing his toy boat in the bath,
The toy captain of the boat is made of metal, and falls overboard,

PROBLEM: DOES THE WATER-LEVEL RISE OR FALL?

BICYCLE BALANCING,,.,.,

Arrange a bicyle as shown, and pull on the string.

—> PuLL.
PROBLEM: DOES THE CYCLE MOVE FORWARDS, BACKWARDS, OR WHAT?
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AND A WHISKY CHASER, PLEASE

Stirling is the home of whisky ~ from the top of Dumyat it is
possible to see Scotland's largest bonded malt-whisky warehouse. -~
When it isn't raining, that is! The following problem seems )

rather appropriate:

I have two tumblers, as shown. One is full of whisky, the other
has the same amount of water. If I take a spoonful of whisky

out of the first tumbler and stir it into the second, and then
take a spoonful of the mixture out of the second and return it to

the first:

PROBLEM: IS THERE MORE WHISKY IN THE WATER THAN WATER IN THE WHISKY?

Ah! you say ~ you haven't told me whether the whisky and the water mix pe{fectly.
It could be that you carry back the same spoonful of whisky that you carried
over. You could even carry back NO whisky at all, and Jjust take water. Or,
probably, you take back some proportion of whisky and water - about 50-50
perhabs, but not surely.

Mmmm, We SalYeeeees

HOW TO TAKE A PRETTY GIRL TO LUNCH

"If I ask you three guestions, will you answer them truthfully?"
"Yes, of coursel”

"Good - that was the first question! Now, if my next question is
'will you have dinner with me tomorrow night?', will you answer

that question the same way you answer this one?"
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Solufions

VOWEL

" : : ; :

lﬁere #5 go solution in the strictest sSense, It depends on Your interpretation
ﬁt logic }n n?tgral language: if, more naturally ip this context, you use the
mathematical” 1nterpretation, only two cards need to be turned over

K\If this is Norp an even number,

. . the assertion is disproved.
Pﬁi\_ If this is g4 vowel, the assertion
is also disproved.

It is common, and by no means wrong, to interpret the assertion ag 'if—and—only—if
all FOUR cards must be examined. Thig is a succinct reminder that o

S§ common words and Phrases with technical meanings in mathematics

. ril. FUNCTION is anything but functional. INTEGRATION has

Tothlng to do with Segregation. CLEARLY means 'I think T could do it if

Pressed’, TRIVIAL means 'T could do it now, after much thought! ! :

SQUARES AND CIRCLES

ALL of the cards are still possible solutions! By our definition of agrecment
the card could well be g black Square, a black circle or a white square, Tt
fannot be a white circle (different colour and different shape), but the white

All of this leaves us wondering if our question has told WS oanything at allz

In fact, the full information carrying content of this reply can only be used
after another question,

!
POLITICIAN'S PROMISES
Rewrite the statements ip their logically equivalent forms: "Four of these
statements are true", "Three of these statements are true" etc. The Statements
are clearly mutually exclusive, 1t is easier to See that statement 4, which now

Yeads "one of these Statements ig true" is the true one, than it is to explain why
One of them must pe true. Basically, this comes about by éxamining statement 5.

HOW TO GET EVERYTHING WRoNg

For n envelopes, the probability P(n) of getting all the invitation in the wrong
envelopes is:

B =1720 - g0 4 L ceet (=1) %0
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This rapidly approaches e—l,_gs can be seen from the fact that the n-th
order Taylor expansion for e is:

S R coe (=1 M

and the value P(n) is obtained when we substitute the value x=1 in this
expression. In fact, for n = 10, P(n) is already equal to e to six decimal
places; so the probabilities for n = 10 and n = 1 000 00O are very nearly
equal!l

To see how to get this result, take the advice given in the hint, and do the
calculations for low values of n:-

For n = 2, there are only two ways of putting the invitations into the two
envelopes - the right way and the wrong way!

For n = 3, there are 3! = 6 ways of butting the invitations into the envelopes,
only two of which are all wrong. (There is Oone way of getting them all right,
three ways of getting just one of them right, and it is impossible to get just
one of them wrong)

P(3) =2/6 = 1/2¢ - 1/3!

For n = 4, there are 4! = 24 ways of inserting the invitations. Counting how
many of these give 'all wrong' is quite complicated, unless You are systematic.
The following is a simple and effective system:

Consider the number of ways of getting just one right. If it is the first one,
then all the other three must be wrondg. We have already seen that there are
exactly two ways of getting three items wrong. Thus, there are two ways of
getting just the first right, and by Symmetry, eight ways of getting just one

right.
To discover how many ways there are of getting exactly two right, note that
there are (3 = 6 different palrs. For each pair that is right, there is

exactly one way of getting the other two wrong. Thus there are exactly 6 ways
of getting exactly two right,

It is impossible to get exactly throee right. fThere is one way of getting
exactly four right. Therefore, there are:

24-8-6-1 = 9
ways of getting them all Wrony.
P(4) =9/24 = 3/8 = 0.3750

For n = 5, the Procedure is the same,

There are 5! = 120 ways altogether; of these,
5x9 = 45 get exactly one right.
N x2= 2 get exactly two right.
x1= 10 get exactly three right.

O get exactly four right.
1 gets exactly five right.
Therefore, there are 44 ways of getting them all wrong;

P(5) = 44/120 = 11/30 = 0.3667
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It is now not difficult to see how to get a recurrence formula for P(n);
Let an) be the number of ways of getting all wrong in the n-envelope case.
That is, N(n) = n!P(n). Generalizing from the above cases:

N(n) = n! - n.N(@-1) - (2);N(n-2) e e - (;12), N(2) - 1

If we agree to set N(l) = O, N(O) = 1, this can be writﬁen as:

n
N(n) = n! - ;g;(g) N (N~§)

Using this formula, we get N(6) = 265,
P(6) = 265/720 = 53/144 = 0.3681

The sequence { P(2);P(3),.... ...P(n)..3 is converging remarkably quickly,
and has in fact already converged in the first two decimal places. Since the
value is just over 1/3, an intelligent guess would be thats

lim P(n) = e-l
n large

-1
In fact, e = 0.3679 to four decimal places, so already for n=6 we appear
to be within 0.0002 of the limit!

Since“e—L = ‘ (-l)n/n!, it is also an intelligent guess that -

P(n) = 1/2! - 173t + .... ... +(-1)"/n!

This guess is actually correct, but unfortunately, I'm damned if I can see
any way of proving it using the above recurrence formula! That's why I gave
the Inclusion-Exclusion Principle in a rather cumbersome hint.

Consider the set consisting of all possible ways of putting n invitations into
n envelopes. Let us label the envelopes from 1 up to n., Let S. be the subset
consisting of all the ways of putting the invitations into the eénvelopes in
which envelope number 1 contains the correct invitation (but without any
Presuppositions about the correctness or otherwise of the other insertions).
Similarly, define subsets 52,83,.... ...Sn.

Then the set Sl‘J SZ Q " e Sn is the set of all po;sible ways in
which at least one envelope contains the wrong invitation. Thus:
N = n! - cene vee
(n) n N(slu 52 3] sn)

By the Inclusion-Exclusion Principle, this is:
n
[ .
nt - S wes)
bey
+
2‘- N(Siﬂ sj)
poc
etc....
Now it is easy to see what N(S.) should be; we make no presuppositions about
the other n-1 envelopes, which Can therefore be filled in (n-1)! ways.

Similarly, N(S. A S,) = (n-2)!, as we are demanding that two envelopes are
filled correctiy and are making no presuppositions about the others. But

there aré(;) distinct pairs to be counted;(g)distinct triples; and so on.
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Thus the formula becomes:

n
Nm) = nf o -(]) -t o+ (D) - D)
= n! - n!/1' + n!/2! - ni/3! ... ... +(71)“n:/n:
Thus P{n) = N(n)/n!
=1 - 141720 = 1/30 ceie uu. +(-1)"/me

as was required!

DOWNING ONE'S BEER

Although hothing in the following solution could not be rigorously pristheg,
it seems, from experience, rather easier to explain the solutioq coni se zthgr
executing the following rather drastic steps: freeze the beer, assgmtng rthe
unrealistically that there is no change in volume, density etc, an :Fnll

can on its side, balancing it on a knife—edge, The;e are three essentially

different situations:

G =

(a) the surface of the beer is to the left of the CG; (b) it is to ;he right
of the CG; (c) it is exactly at the CG.

Take case (a) first. If the air-space to the left of the CG was replaced bé
beer (presumed denser) then the can would topple to the left, becausg the Cd .
would have been moved to the left. As this corresponds, in t@e verFlcal model,
to lowering the CG, clearly the CG cannot be at its lowest point while the
surface of the beer is below (to the left of) the CG.

In case (b), if we replace the beer to the right of (above) the CG by air, the
can again topples to the left. Once again we conclude that the CG cannot be
at its lowest point while the surface of the beer is above the CG.

We are thus forced to conclude that the centre of gravity is at its lowest
when it coincides with the surface of the beer

CHEESE SLICES

Look at the innermost cube: the one that
cannot be seen when the cheese cube is in
its uncut state. This cube has six faces.
Clearly, no two of these sides could have
been produced by the same knife-cut.

Hence, six is the smallest number of cuts
necessary.
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7

THE HUNGRY MOUSE

NO. TImagine that the sliced cube is coloured (blue and white, say) so that
'sub-cubes' which meet across a face have different colours. From the outside,
the cube would look like this:

The conditions of the problem imply that every time the mouse eats his way
across the boundary between cubes, he changes the colour of what he eats from
blue to white or vice versa. If there are an odd number of cubes, and he is
to finish at the central (blue) cube, then he must also begin at a blue cube,
and eat through, necessarily, 14 blue cubes and 13 white ones. Unfortunately,
there are 15 blue cubes and 12 white ones - hence no chance for the mouse!

GIVE ME A NUMBER

Simply the puzzle works because 7x11x13 = 100l. The apparently innocuous step

of 'repeating the digits to make a 6-digit number’ simply multiplies the g
original choice by 1001, and hence makes all the subsequent manipulation | 1
possible.

But a simple knowledge of why it works is not the only "solution" to the

problem. It is as well to know why it works as well as it does. Firstly,

7,11 and 13 are consecutive primes. If conducted as a group exercise, the

skilful manipulator can usually lead his audience into suggesting that last i
13 (at least he can ignore any other calls from the audience of possible

divisors). Even 7 itself is a 'special' number to many people. Division by

7, 11 and 13 is also just about possible with the equipment that people

generally have to hand in mathematical night-clubs (i.e: pencil and paper at

most). The 'innocuous' step does, in fact, seem quite harmless. Imagine if

you will the followihg problem, the next one up in the family that this belongs

to. It emphasises quite clearly what makes this so attractive a 'quickie'.

"think of a 4-digit number. repeat the digits to make
an 8-digit number. Divide by 73 (and then 137) - what?
no remainder?"

There is so much visible sleight-of-hand afoot (sic) that no-one would be in
the least surprised, even if they failed to understand how it all worked.

NEW VIEW

The fuller versions of the objects, fleshed-out to three dimensions are on
the top of the next page.

ey

D

These two are classic design problems.

Stirling-type
standing ash-
trays

CAN YOU INVENT ANY MORE? IT'S VERY HARD!

exIT

THE AMAZING MANSION MYSTERY

I will show you how to construct a
universal escape instruction for the
mansion whose plan 1s shown, but in
such a way that it is clear that the
same method would work whatever the
plan of the mansion.

There are only a finite number of
passages in which John can be to send
his S0S. For the mansion shown, I
have labelled these A,B,..... JH,I.
Since there is at least one route

to the exit from each room, for each
starting position there is at least
one sequence of instructions which
would take John to the exit. For the
mansion shown these are as follows:

PASSAGE A B C D E F G H I
SEHQUENCE L RRL RL LRL LL RRLL RRLL RLL LRLL

Here, 'L' stands for left, and 'R' for right. We now consider the passages
that John might be in, one by one. If he is in passage A, we see from the
table above that the instruction L will get him to the exit. So we begin ]
our universal escape instruction with L.  Suppose, however, that he starts in
passage B. When he follows the instruction L, he will end up in passagg F.
We see from the table above that the instruction RRLL would then take him to
the exit. So we add these instructions to the one we already have. Thus we
get the instruction LRRLL... which will enable John to escape from either
passage A or passage B.
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Continuing in this way, we next consider what would happen if John starts in
Passage C. Following the instructions we have already given him, he would
end up in passage H. So we now add on the instruction RLL which would get
him to the exit from this passage. We now have the instruction LRRLLRLL
which gets John out from prassages A,B or C. Coincidentally, we see that the
same set of instructions will also get him out from passages E,F,G or H. So
we need only consider what happens if he is in bassage I. Following the
instructions we have given him so far, John, starting in passage' I, would end

up in passage H, so by adding RLL to the end, we get the final set of escape
instructions:

LRRLLRLLRLLRTLL

which enables John to escape, wherever he starts from. (By considering the

bassages in a different order, it may be possible to get a shorter universal
escape instruction.)

Since there is a universal escape instruction for each mansion, any infinite
sequence which contains all possible finite sequences of L's and R's will
enable John to escape from any mansion at all. This is because, following these
instructions he will eventually reach the universal escape instruction for the
mansion he happens to be in, and so will eventually reach the exit and escape.
That is, if, fortuitously, an earlier combination of L's and R's does not get
him out.

Conversely, it is easy to see that if an infinite sequence of L's and R's omits
some particular finite sequence of L's and R's, then it will fail to get out of
some mansions. This is because it is easy to construct a mansion such that the
exit can only be reached by following some particular finite sequence of

instructions 'just before you reach the exit. (For example, in the mansion shown

you can only escape if your last move is to take the left-hand exit.,)

THE WORM ON THE ROPE

The worm makes it, but only just! Consider the motion of the worm in terms
of fractions of the distance to cover. After 1 second, and just before the
rope expands, he has covered lem of a total distance of lkm (= 100 000 cm) .
The rope then expands, and the worm crawls a further lem. However, his speed,
expressed as a fraction of the total distance/second has dropped. Whereas
before it was 1/100 000, now it is 1/200 000. The unit of his speed is
"fraction/sec",

Clearly (clearly?) the distance travelled, in this fractional measure, after
N seconds, is the sum to N terms of the series:

1/100 000 + 1/200 000 + 1/300 000 + ..,
More manageably, this is:

1/100 ooé[l+l/2+l/3+l/4+ J
It is a classic result that 1 + 1/2 + 1/3 + 1/4 + ..... can be made as large
as we wish, by taking a sufficient number of terms. When we have taken enough

for the sum to exceed 100 000, the worm will have made it! The time it will
take him is beyond belief, and certainly beyond the end of the universe!

-4g-

THE WORM THAT DIETH NOT.u.44?

At time t, let x(t) be the proportion of the rope which the worm has traversed.
The rope is now of length 1+t km.

There are two ways to find out what proportion of the rope the worm has
traversed at time t+h.

Method 1:
-5 .
At time t+h, the worm has covered a further 10 ~.h km relative to the rope.

Meanwhile, the rope has lengthened to l+t+h km. Therefore, the extra
proportion of the rope which the worm has traversed is somewhere between

10">.n 4 10°7%.h
I+t an 1 +t+h

In other words:
-5 -5

10 °.h _ <« 10 °.n
o < x(t+h) x(t) S T )
Method 2:

At time t, the worm is (l+t)x(t) km from the starting point. AF time t+h,
the worm is further from the starting point, partly be?ause of its own It
crawling and partly because of the motion imparted to it by the rope.'abls)
own crawling causes it to cover a distance of 10 ..h km. At any (var; t.e
time t,, the velocity imparted to it by the rope is equal to the prop:; ion
of the rope it has traversed at t; multiplied by lkm/sec. Therefore. e .
extra distance from the starting point which the motion of the rope 1m£ar s
to it, between t and t+h, is somewhere between h.x(t) and h.x(t+h). iT usé
at time t+h, the distance d of the worm from its starting point is given by.
»
(146) . x (041072 h + hox(t) € @ S (L+£).x{(€)+10 °.h + h.x(t+h)  (2)

Thus, the proportion of the rope which has been covered at t+h is d4/l+t+h,
and this is equal to x(t+h). Thus, expression (2) becomes:

-5
‘ -5 10 °.h | h.x(t+h)
O “.h , h.x(t) 1+t

[*::h‘“(t) + i+t+h * Tipan o S XU S Shgmex(®) 4 TEns Y TRy

Bubtracting x(t) from this expression, and simplifying:

“Soh 10°°.n )
%%Eiﬁ_ < xgem - xe) < 2R B e - x

which reduces to the same as expression (1).
Thus, both methods give the same expression for x(t+h)-x(t), and in the limit
as h = 0 this gives the differential equation:

1070
1+t

x' (t)

-49-




This is a first-order differential eguation,

-5
10
x(t = —
(t) P
At t=0,
Thus A=0.

Therefore, when 10"5.1n(1+t)

This happens when:

1+t

t

An awfully looooong time!

DOTTY

NEEDLE MATCHES

PRIME cuTs

dat

= 10°.1n(14t) + A

the worm has covered a zero proportion of the rope,

exp (10°)

1, the worm reaches the end of the rope.

exp(los) -1

There is little of prime-number theory here: the sequence defined by

u

n

2

(l.e:

2,2,2,2,2,2, .....0)

contains only prime numbers; the sequence defined by

u

n .

n

(i.e:

1, 2, 3, 4, 5,6, .....)

generates all the prime numbers (and a lot else besides!)

THE INDUCTION GAME

In this example, numbers divisible by 3 have to be followed by smaller numbers,

numbers not divisible by three have to be followed by larger numbers.
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whose general solution is

and so x(0)

THE GOOD DIE FIRST

The surprising thing is that in fact it is die A which is better than
die C! The numbers on C are:

If you repeat the calculations =
that we did before, you get to l ]
the following results, as shown A EES
in the tables below. s
g
2
DIE C DIE C
5 5 5 2 1 1 ) 5 55 2 1 1
4 cC ¢ C B B B 6 A.A A A A A
4 ]lc-CcC ¢ B B B 6 A A A A A A
41C C C B B B 3 C C C A A A
PIEB 2 lc c c = B B PIEA 2lccc = aa
2]¢c c c = B B l1§CcC C C C mw =
2]1c ¢c ¢ B B l1¥y¢Cc ¢ ¢ € = =

From these tables you can see that when B plays against C, on average,
in every 36 throws C wins 18, B wins 15 and there are 3 ties. So C has
an 8.333...% advantage over B. However, when we play A against C, we
find that in every 36 throws, on average, A wins 17, C wins 14 and
there are 5 ties, and so A has an 8.333...% advantage over C.

Thus with these three dice B is better than A, C is better than B and
yet A is better than C! Thus the relation "x is better than y” between
dice in the sense explained is not a transitive relation. Thus it is
perfectly logical for you, given the choice, to prefer B to A, to prefer
C to B and yet nonetheless prefer A to C.

The three dice here do not form the only set of #htransitive dice. This
set was chosen because each of the dice has exactly the same percentage
advantage over the die it is preferable to, as do the other two. An
alternative set of intransitive dice is shown below. These do not have
this property but they have the advantage that with these dice, ties are
not possible and the advantages of one die over another is even greater
than with the set given above. I will leave it to you to do the
calculations for these dice.

¢ 3
2 /) ¢ - NJ L5 /1)
16 ! A b ’ 5
X9 3 a3

You will notice that it doesn't really matter what the proportion of 3's
and 4's on die B really is. '

[

If you make a set of these dice and take them into a pub, you can make a
lot of money. Play A against B and let people notice that B wins most of
the time. Similarly with B against C. Naturally, if you now challenge
them to a match of 25 throws and let them choose between A and C, they
will choose to play with C. Happy winnings!
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THE STRANGE AUCTION

zi;jbiuczipn is an excellent demonstration that it is easier to get into
e an it is to get out of it Let us i
: 1 t . assume that the bidding has
diigng gzzgreii fZ; soTe while, and that most of the players have glready
. makes life a little easier if we
difference between bids — sa; i ange the ponpoant
‘ Y Y 5p -~ this doesn't change the bl
Saves a constant reference to "a bid of ol
: at least £1.26.,.." T i
last bid was £1.25, the next (if any) must be £1.30. s, 1E the

zzzre afe just three players left - Fred, John and Alan, bidding in that
Other. Th§ }ast spoken bid (which must have been Alan's) was £5 45 A1l
€r participants have dropped out and can play no further part. )

A W

FRED: This is all getting a bit much for me. T think I'1ll dro
out now, before the stakes get too high - but will therep
be two o?her bids, to free me from the obligation to pay up?
I spoke in the last round, and bid £5.35, so if Joh it d
bid now, I lose out" . ’ ’ " dossn’t

JOHN : ;Zell now - thgre’s Jjust two of us left. How do things stand?
-The last two bids were Alan's (£5.45) and my own (£5.40) and ;:he
one before that was Fred's (£5.35). What are my choices? I
drop out, or T bid.
gf ; dropgout, then I certainly don't get the pound note. What
10 lose; I have to pay £5.40 because then only Alan is left

n aqd he's the last bidder, so he gets the pound.

If I'bid, then I'm still in with a chance." » g

I bid £5.50

ALAN: "So ~ 7ohn and myself, What do T do? Thétilast bid of Fred's
dzesn t matter at all to him now - he's out of it
The last three bids were John's £5:.50 5
John's before that (£5.40). "‘{' 200 My.oun (£5.45) and
If I drop out, then.I don't L ehe po
n . get,the pound note. John gets th
? note, éecause he bid last, but. I have to pay up my 55.35. ©
iférsiéfi Ehen iohn.might not. Then I'd get the pound note.
; A ave to meet that £5.45 bid, but 1’
P rhaliaid didgn e e s bu d be a pound better

I bid £5.55

JOHN:; "If I drop out, then T don't get the pound note. Alan gets the
note, ?ecause he bid last, but I have to pay up my £5.50.
;{;I f%ji Ehen Alan might not. Then I'd get the pound note

s sti ave to meet that £5.50 bid, but I'd be .

f Off than if I don't bid." ’ ® @ pound better

I bid £5.60 -

ALAN: "If I drop out, then I don't get the pound note. John gets the
note, because he bid last, but I have to bay up my £5.55
If I bid, then John might not. Then I'd get the pound note
I'd still have to meet that £5.55 bid, but I'd be a pound bétter
Off than if I didn't bid."

I bid £5.65 -

Clearly, while the participants reason as they do, there is no reason why
they should ever stop bidding without the intervention of some external
agency, such as death, a limit to their funds or some similar such

calamity.

It appears at first glance as if there is a flaw in the reasoning, in that
the participants do not cover all the cases. The analysis covers what-
happens if they drop out, and what happens if they bid and their opponent
drops out. You may well feel that some sleight-~of-hand is. lurking in
their careless neglect of what happens (as it does) if they bid, but their
opponent also bids. The reasoning can be tightened up a little by the
-following style of reasoning:

"If I drop out then I don't get the pound note. Alan gets the

note because he bid last, but I have to pay up my 27 million pounds.
Suppose I bid. Then the game goes on and either Alan drops out or
I get to this decision point with nothing having changed except

the sums involved..."”

JOHN:

A mathematical answer is hard to come by. Once the game has started, with
two opposing players making bids (we'll discuss players working together in
just a moment) then there's no mathematical reason why it should ever end.
£27 000 000 is no nearer to £*° than £1 is. Once the sums bid have passed
60p (so that at least 50p+55p must be paid) the auctioneer cannot lose.

The best strategies, in order would appear to be:

l: Don't play.

2: If you do play, get out while there are at least
two others still bidding. You can't of course
know when this is (cf. Fred above).

3: If you're left with only a single opponent, cut
your losses right away.

There is, however, a more attractive solution. Geét into collusion with
your colleagues. Bid 5p,10p and 15p in order and then all drop out.
Pay up the 15p (=5p+10p) and split the £l note between you. Then the
only person disappointed is the auctioneer!

MY FAIR LADIES

With 10 women, a large envelope-back and some time and energy - or possibly
the computer simulation hinted at earlier, you could perhaps work out that
the best idea was to let 4 women go past and select the next woman who
rated higher than any of the ‘four you had seen so far. If you got to
number ten, you must have taken number 10.

This is clearly the style of solution. We must sample the 'population',

to get some idea of what to expect in general, and our decision about any
subsequent woman must be based on this sampling. If we are 'going for the
gold' then clearly we must select a woman better than any in the sample so
far, rather than something such as 'any woman better than the average so far'

The question remains: how many to sample? It is beyond the scope of this
booklet to prove that the nicest solution is to sample 1/e of the expected

number (10/e = 3.6...).
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Alternative strategies for those drunk on probabilities could be based on
the not unreasonable assumption that the 'scores' are Normally distributed.
One possibility could be:
"keep a running computation of the current mean and standard deviation
of §cores. As soon as one is encountered that is more than' 2 standard
deviations above the mean (and hence significantly better than the average
s0 far) - take her!"

A not dissimilar problem is that faced by motorists running out of petrol
and searching for a cheap garage. Where do we buy? The cheapest, of couése!
The problem is slightly different, because of our foreknowledge of the likely
expected prices and because we do not know how many garages there will be.

SUGAR, SUGAR

Compute moments - they only take a moment! Look at the first welghing:

/\ ) . From this:

o LYY

Looking at the second weighing:

L /\ w,.a = 1,b

e 2
or w, = b/a
So, from this: - 2,0
o, from this Wy + W, 5*3
- az + b2
ab
2, .2
1 = & *+b" - 2an. '
wl + w2 1 Fp—
2
= (a=b)
-~ °

Hence v, + wl > 1 and it seems that the Scots aren't as canny as they seem!

DON’T KEEP ME HANGING ABOUT

Let my cell mate be A, and the others be B and C and suppose that the guard
named B as not to be pardoned, Then the sample space is:

l: A pardoned and B named
2: A pardoned and C named
3: B pardoned and C named
4: C pardoned and B named.
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If B or C 18 to be pardoned, the guard has no choice but to name the
other, as he can't name A to A. Thus events 3 and 4 have probability
1/3. However, events 1 and 2 depend on whether the guard names B or C
given that A is pardoned. Let p be the probability that the guard will
name B in this case. Then event I has probability p/3 and event 2 has
probability (1-p)/3.

Now, we wish to know the probability of A being pardoned, given that B
is named.

Pr (A pardoned B named) = Pr(A pardoned and B named)
Pr (B named)

= p/3
p/3 + 1/3

= p/ (1+p)

When p=1, we get 1/2, corresponding to the guard naming B inevitably, if
A is to be pardoned. ’ .

When p=1/2, we get 1/3, corresponding to the guard choosing randomly which
to name.

THE FIFTEEN GAME

Yes - you have played the Fifteen Game before, and often! It is, in fact,
nothing less than noughts and crosses (tic—tacftoe) in disguise. Consider
the following magic square: »

W

The numbers in any row, column or diagonal add up to 15. Furthermore, given
any three numbers from 1 to 9, which add up to 15, then they make up a row,
column or diagonal. Choosing numbers corresponds to putting noughts (for the
first player) or crosses (for the second) in the squares. By the remarks above,
getting a complete row of noughts or a complete row of crosses corresponds to
picking three numbers that add up to 15.

This is a good example of how an unfamiliar situation - the Fifteen Game -
can, when loocked at in the right way, be seen to resemble a very familiar

situation - here noughts and crosses. This is quite a common situation in
mathematics where choosing the right model for a problem is often at least

half the way to solving it.
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THE FORTY FAITHLESS WIVES

SQV::? 40th day after the announcement, all 40 husbands killed their unfaithful
M§ny people vho ?hing that something must happen favour the answer that one
;?fait?ful w%fe is killed every day for 40 days, but consideration of the

%rst 'que;tlon-tc—ask—oneself' shows that this answer must be wron Th
Situation is exactly the same for each unfaithful wife, so, by symmgér if
any one of them is killed they must all be killed and ;11 én the same g;y.

To he}p tackle the problem, it is a good plan to take account of the second
qgestlon. Let us consider a similar problem with rather fewer faithless
w1yes, say ?nly two. 1In this case, each of their husbands knows of one
falthless wife and s? at first is not alarmed by the announcement that there
;§ at least one unfaithful wife in the village. So nothing happens on the
irst day. But now consider what one of these husbands can deduce on the
second day.' He can.argue as follows: "If my wife jig faithful, the husband
;:itﬁi unfa+thfu1 wife I know of would not have known that there were any
Jait e:z;lZQVEEmb:fogedhe heard ;@e announcement. So thé announcement would
rre ona o de u?e that h%s own wife was unfaithful and he would have
1 e. er yesterday. Since she is still alive, it must be that m
wife is unfaithful to me. Where is my knife?" ’ v
Of course, both husbands would argue in the same way and come to the same

;:;clusion at the same time., So both wives would be killed on the second

Although it is far from true that a theorem that is true for n=2 ig true for
;ll values of n, we should have enough confidence now to attempt to prove

y induction, that for all np 2, in a village as described above, but wiéh
n faithless wives, they would all be killed by their husbands on éhe n-th
day after the public announcement, .

We have élready checked that this is so when n=2.‘?RAtho:Htﬁun glve the
ggneral induction step from n to n+l let us, in the spirit of the problem,
give the argument from n=39 to nm40 (it is easily seen that this generalizes).

Thus we assume that we can deduce that in a villa e with 39 faithl i

they will all be killed by theix husbands on the thh day after th:s;ugizis
announcement.  Not only can'we deduce this, but so too can all the husbands
since they are all excellent logicians, '
Now consider the village with 40 faithless wives, Each of their husbands can
argue és follows: "If my wife is faithful I live in a village with 39 faith-
less w%ves and so on the 39th day after the announcement, all will be killed
by their husbands. I shall wailt and see if this happens." Thus, they all wait
f?r 3? days, 'and when none of the wives is killed they can all éeduce that the
live in a village with 40 faithless wives and hence that their own wives are Y
ot faithful. Therefore, on the 40th day, every husband killed his wife.

This puzzle turns up in several different versions. For example, there is the
problem of the three people seated around a table with a disc fixed on each
f:rihead. Each can see the other discs, but not his own. They are told that
at least one disc is white (and in fact all three are) ca

b . n the
colours of their discs? ) Y deduce the

For a similar, but slightly different problem, try Number i
s
follows immediately. ' Y 22.fhe Braln which
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NUMBERS ON THE BRAIN

One player or other will eventually be able to deduce his number. Before
giving the general argument, we deal with the special case mentioned in the
problem. If Algernon, as he must, initially says that he does not know his
number, Bartholomew can argue as follows: "Since I can see 4 on A's forehead,
and 11 and 15 on the blackboard, my number is either 7 or 1l. Suppose my
number is 11. Then Algernon, seeing 1l on my forehead and 11 and 15 on the
blackboard would know that 15 must be the sum of our two numbers (since the

sum must be larger than either of our numbers), and so he would have known that
his own number was 4. Since he did niot know, my. number must be 7."

Bartholomew was able to deduce his number in this case as soon as Algernon
said that he did not know his number, because A's number is ‘not larger than
the difference (15-11), of the two numbers on the board.

This will always be the case. Suppose, for example, that their numbers are
a and b respectively, and that the numbers on the blackboard are x and y,
with x greater than y. Our assumption is that A's number is no larger than
the difference between x and y - that is, we are assuming that a < x-y.
Again suppose that Algernon says that he does not khow his number. Then B
can argue as follows: "Since I can see a on A's forehead and x and y on the
blackboard, my number is either x-a or y-a." By our assumption, y<x-a, so
B can now say "If my number were x-a, then Algernon seeing x-a on my forehead
and x and y on the blackboard would know that x must be the sum of our two
numbers and so he would have known that his number was x-(x-a), i.e: a.
Since he did not know his number, mine must be y-al”

Thus, if A having said "No" gets the same answer from B, he can deduce that
his own number is larger than the difference between the two numbers on the
blackboard, and B can make the same deduction. Hence after three consecutive
"No"s each knows that his number is larger than this difference. Suppose that
this difference is k. Then of course, if either number on the blackboard is
less than 2k, each can deduce that the other is the sum of their numbers, and
hence deduce his own number. If both numbers on the blackboard are at least
2k, then each player mentally supposes that the numbers on their foreheads are
each reduced by k, and the numbers on the blackboard correspondingly by 2k.

If either player can deduce his own number in this derived game, then by
adding k he can deduce his number in the original game. If not, they make a
further reduction of k (imaginary) to their own numbers, and 2k to the board,
and continue in this way. Since their numbers are steadily being reduced, while
the difference k remains constant, eventually they are imagining a game in
which one or other of their numbers is less than the difference, k, between
those on the blackboard. We have seen that in this case, one player or the
other can deduce his own number. By adding the appropriate numbers of k's,

he can thus deduce his orxiginal number.

THE PERIPATETIC MONK

Yes., Let two monks set off, on the same day, one from the top, the other from
the bottom, following the exact timing of ocur monk. Clearly they must meet
since they are on the same path and eng up in opposite positions at sunset.
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BALANCING ACT

Yes. Place it ;nywhere on the table and rotate it through 360° on the
table.top. If it starts unbalanced, it ends unbalanced but with the opposite
pan high to the one that started higher. Somewhere they must have been level.

Compare the Peripatetic Monk.

TRIPOS PROBLEM

Yes. Same trick as the Balancing Act, but harder to see

ORANGES AND LEMONS

The most important piece of information we have is that all the labels have
been switched, and hence no crate is currently labelled_Eairectly. Choose
from the crate labelled "MIXTURE". Certainly, it cannot be a mixture, and
hencg contains just one fruit - exactly which gan be determined by the sample
Say }t is "LEMONS". Then the crate currently labelled "ORANGES" - which must.
be either "LEMONS" or "MIXTURE" in reality - cannot be "LEMONS", It must be
"MIXTURE" therefore, and the remaining crate, labelled "LEMONS", must be the
only other possibility, "ORANGES". !

A QUESTION OF LIFE & DEATH

First look at the ground. If you are standing on the line stay where you
are and hope that the train is coming towards you. If you are not on the
line then, as it is absurd to walk either directly towards or directly away
from the sound, you must choose to go either to the right o# éb‘th. left,
Suppose you choose to go to the right (and there is no evidence that will
enable you to do better than to choose at random). Then you might as well
assume that the train is travelling in some favourable direction, like the
one shown in the diagram. (Unless the angle o is acute, the situation is

quite hopeless). o
\\\Q

Suppose train is moving

The whistle b{/’_ in this direction

came from this
direction. /

4

L

You choose to walk in
RL\_—/’ this direction.

youARE;mmE.——y

J.:t is now up to you to choose a value for the angle 6 . The best value for &
is the one which makes the ratio BC/AC as large as possible.

By the Sine Rule (there - you knew it would be useful!) we know that:

BC/AC = sin@/sin&
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We can do nothing about the value of sin &. The train has chosen that angle,
so weomust make sin @ as large as we can. Since sin @ is a maximum when &

ls 90~ the solution to the problem is to walk at right angles to the direction
from which the whistle came,

Some people are unhappy at walking in a straight line, and propose any one of
a variety of spiral-type solutions. It seems self-evident that if you have a
strategy that will take you to the train, it is best to get there as fast as

possible, but the details of proving that walking in a straight line is best

are left to the reader.

CORRECTION v

Once the rook is in thé following position:
there is no difficulty. The king can only ) R
move into the corner, aqd the rook can follow K1
him, steadily reducing the area that the
king has to play with. The rook can reach
this position in two moves (provided that
he knows where the king is!).

There are other allled problems ~ what happens if the king and rook make
their normal chess moves? Can it be done with a bishop and a king? Wwhat
if the king can only move diagonally?

FAMILY TREE

The 'minimal' solution is TWO, The two must be women, they must both be
pregnant by husbands who have since died and each must be carrying twins.
Who carries what is unimportant, provided that the children consist of two
boys and two girls. What happens then is that these children must marry,
and more restrictively, up till the present day, only cousin marriages can
occur. Some medical opinion holds that with such close marriages occurring
over a lengthy period of time, polydactylism will occur # that is to say,
it is quite likely that descendants of this family will have more than 5
fingers on each hand.

As we hinted, a lot depends on whether you are prepared to accept that a
foetus or an embryo is alive before birth, It doesn't change the problem
much, eithexr way.

The last problem of this quartet is not on the same theme at all, really.
Basically, the argument goes: 'the number of people with more than 2 arms
is eithexr zero, or at the least negligible, while the number with one or no
arms is relatively high. Hence the average number of arms is less than 2.
It is almost certain, therefore, that the next person you meet has an above
average number of arms.

WE SHALL NOT BE MOVED!

No! A domino, no matter how it is placed on the board, must cover a white
square and a black square, 31 dominoes will thus cover 31 white sguares
and 31 black squares. But the squares that have been removed were both
white squares, so that the mutilated board contains 32 black squares and
30 white squares. No arrangement of 31 dominoes could ever cover this
collection of black and white squares.
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AND- AGAIN!

Clearly, from the reasoning in the previous puzzle, if the two squares to

be removed are both the same colour, the covering is not possible. To show
that it is always possible if the two squares removed are of opposite colours,
we arrange the board in a 'chain' like this. White and black squares are
seen to alternate along the chain.

When two squares of opposite colour
are removed, they are either adjacent
in the chain (in which case they
could have been covered by a single
domino, and any covering of the
remaining squares will suffice) or
they are separate. As they are of
different colours, it will be seen
that the effect of removing two
Squares is to break up the 64-square
long black-and-white chain into two
even chains: that is, two shorter
black and white chains with an even
number of squares in each. More
precisely, there will be 2n squares
in the one chain and 62-2n.squares
in the other. It is easy to see
that it is possible to cover each of the shorter chains. Under these
circumstances, the chess-board can always be covered!

aladla
3 ¥ v
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COLOURFUL CUBES

. |
It is always possible to arrange a painted cube with the Red.face uppermost,
if we accept that rotations, about any axis, do not phangn the cube into a
'different' cube. . . ) )
With the cube arranged with the Red face uppermost, tha Oxange face can be
in either of two essentially different positions = ¢n tha bottom, opposite
to the Red, or on one side, Let us take thame.cames in turn. If the Orange
face is on a side, it can always be turned to face front, still keeping the
Red face uppermost. But every different arrangement of the remaining four
colours will give us an essentially different cube, so that there are 4! = 24
'different' cubes with Orange on a side,

With Orange on the bottom, we turn our

attenfion to the next colour, Yellow.

This must necessarily be on a side, and
again we can turn it so that it is to J/ \\\

the front, without moving the Red and

Orange faces from their positions on the

top and bottom. But again, the 3! = 6

possible ways of colouring the remaining )
3 faces will give us essentially different I

cubes,
There are thus 24+6 = 30 'different!
coloured cubesy The method of solution,

which is just a very careful enumeration
of cases, is best illustrated in the
accompanying diagram, which says it all!

<o
LY+ 31 =30

Compare the enumeration here with that carried out in the problem of HOW TO
GET EVERYTHING WRONG...

DRILL AND PRACTICE

~

The cross~séction is an annulus:

R : 2 2
whose outer radius is R” -~ x and whose

inner radius is the radius of the hole:

R2 - L2
. 2 2
Thus, the area of the annulus is: (R -x")
2 2
TE® - x5 - T r? -

2
which is T (@2 - x%)«

: Now this is the same form as'7r(R2 - xz),

the area of the cross-section of the sphere fadius R'at length x. So,

(12 - ¥2) is the area of the cross-section of a sphere of radius L-at height
x from the centre. 8o for each height x, the annulus area is the same as the
corresponding cross-sectional area of a sphere of radius L. It seems reason-
able then to deduce that the volume of whgt'remains of the sphere is just the
volume of a sphere of radius L (i.e: 4xL"/3) corresponding to the limiting
case of a hole of length 2L through a sphere of radius L. So the volume
remaining is constant.

This introduces another method of solution. If this is a well-set problem,
and has a solution, then the solution cannot depend on R, for we have not been
given R! Let us therefore choose a suitable value for R, to make life easy,
such as R=L. QED!

Nonetheless, try the given method with an octahedron and a square hole of
length 2L through it. Can you generalise this result?

THE ONE-MOVE MATE

Only one black pawn is missing, and this became the bishop (e5). We shall
show that on its promotion route this pawn checked the White king, thereby
causing it to move; thus, ‘white castles' is no longer a legal move. More
strictly, we shall assume that the pawn avoided giving check, and then
demonstrate that the board position is impossible on this hypothesis.

The natural and cbvious candidate for promotion is Black's CP, To avoid
giving check, this must have promoted on ¢l (having captured from b2) or al.
In either case, three pawn captures are required. 1In addition, the bishop
originally on £l must have been captured by a knight, and this accounts for
all four captures by black,

The obvious candidate for the White promotion is the QNP, and this must have
captured three times to by-pass the black pawns and reach a white promotion
square. Thus the tally of White captures is:

3by ONP + 1 by P(e6) + 2 by P(f5) + 1 by N(say) = 7
creating P inversion capturing B
doubled P's
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But this is impossible as White only made 6 captures in alll

"That completes it!"™ I cried, "Black's QP must have checked the White king,
and castling is illegal. The solution must be P x P e.p. A wonderful
example of your.analytic skills, Holmes,"

Holmes looked displeased rather than flattered...

"When have you known me satisfied with the superficially obvious? Besides,
if you had more of the analytical prowess you keep extolling in me, you
would not have overlooked an essential part of the data. White's QRP moved
twice in the last ten moves."

It is natural to assume that Black's QP promoted, but it is not certain that
it did so. It could prima facie, have captured its way to b5, leaving the
QNP to promote on al. If the NP captured away from the b file before the

QP captured on to it, White's QNP would have had a clear run to b7 and the
earlier deductions would not hold. The captured White pieces consist of the
bishop on f1 (taken by a knight), a black square bishop which could not have
been taken by the supposed QP at b5, and two knights. Therefore the QP took
both knights and the QNP took White's 'black' bishop; but where? It must
have been after White's QRP reached a4, but before White's QNP reached b4.
Furthermore, P(b5) must have captured from c6 after White's ONP got past,
Counting 10 moves back from the board position gives:

l: P(a5) - a4
2; B(d5) ~ a8=pP
3: P(a8) - b7 uncapturing a rook; Black P (b5)
uncapturing N.
meanwhile, B(e5) 4: P(b7) - b6
unpromotes on al 5: N(b5) clears out of way
to a P which backs6: Q(b4) clears out of way
to a3. Black's K 7: P(b6) - b5
has moved aside 8: P(b5) - b4
to allow this. 9: P{b4) - b3 Black P(a3) - b4 uncapturing bishop
10: B(a3) clears out of way
11; P(a4) -~ a3

Thus QRP can have moved twice in the last 1l moves, but NOT in the last 1O.
Hence it was Black's QP which promoted, and 8o the White King has moved.

Holmes sat back in his chair, but was still brooding. "The position is still
interesting. If we make the simplest of'changes, moving P(c7) to 47, White
again has a mate in 1. But now the outcome is different. I wonder whether
that fellow Collings is aware of this final twist?"

WHAT'S NEXT? 10, which is "6" in base 6 (after 6 in base 2,3,4 and 5 &c)
SATISFACTION

There are two essentially different approaches. One consists of any one of
the three participants pouring from the jug to the glass. As soon as any

of the three feels that the glass contains a measure that he would be prepared
to accept as a third, he calls out. The first one to call out drinks that
third,- and the problem is reduced to the two-person case, As the two 'silent'
partners have not yet called out, clearly they believe that the first person
to speak has drunk less than a third.
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An alternative approach, that avoids problems over simultaneocus calls, and
seems somewhat more workable in practice, is for the first participant to
pour out what he believes is a third. If the second drinker disagrees, he
is entitled to reduce the measure by pouring back as much as he wishes. If
he believes that the first player has poured too little, he will presumably
leave the short measure alone - recall that the drinkers are uncharitable.
Similarly, the third drinker may alter the amount as he thinks fit, but only
by pouring back. The last player to touch the jug drinks the glass and the
problem reduces to the two-person case.

If the aim is to divide the drink exactly into thirds (rather than assuming
that each drinker acts to maximise his portion, subject to his companions
allowing him only onelthird) then it is necessary to allow for drinkers to
pour into the glass to top-up a deficient 'third'. In that case, the jug
and glass must pass a full round without changes.

In the two-person case, this reduces to the well-known: "you pour and I'll
choose.”

EUREKA!

The water-level falls, The simplest explanation of this introduces an
excellent technique in that important area of mathematics ~ convincing
yourself that the solution is correct, so that it is worth your while working
towards a formal solution!

The technique is called 'taking things to extremes'. The problem depends on
the relative weight and volume of the captain, Assume him to be a minute
model made out of very dense metal ~- gonsider him sculpted out of one of
those incredibly dense stars if you wish. His volume is negligible, but

his mass, and-hence his weight, is enormous. In the boat, his weight forces
the boat into the water, raising the water-level to the point at which we
start the problem (remember what Archimedes said about why boats float).

As he falls overboard, the effect of his weight is lost, and the water-level
falls, The addition of a negligible volume to the water may be neglected, so
the water-level stays down. :

A regular companion to this problem is the one about the monkey hanging in
equi~ibrium in the following situation:

#*%The xope is assumed to be light and in-

axtensible,  and the friction at the
pulley may be neglected., The problem
Lo w what happens Lf the monkey
't olimb up the rope?

-

‘Ihis we leave am an exercise for the
roador!

BICYCLE BALANCING

Try it for yourself and see! "It falls over" is not an acceptable answer.
The hand of God keeps the bicycle upright, throughout.
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AND A WHISKY CHASER, PLEASE

The volume in each tumbler is the same at the finish as it was at the staxt.
Irrespective of what has been transferred, what is NOT whisky in the whisky
tumbler must be water. And vice-versa. There is exactly as much whisky in
the water as water in the whisky.
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There are many books on recreational mathematics. It seems
invidious to recommend particular ones. However, the reader

should find something to his taste in the pages of:

Mathematical Recreations & Essays: W.W. Rouse-Ball (Macmillan)
The Gentle Art of Mathematics: D. Pedoe (Penguin)

Mathematical Puzzles & Diversions from Scientific American:

M. Gardner (Penguin)

More Mathematical Puzzles and Diversions from Scienliflc American

M. Gardner (Poenquin)
How to Take a Chance: D. Huff (Penguin)

In addition, Scientific American runs a regular monthly column

"Mathematical Games" on recreational mathematics.
The journal MANIFOLD, published at the Mathematics Institute,
University of Warwick, Coventry CV4 7AL, also carries pieces on

recreational mathematics.

'New Scientist' 'The Sunday Times' and other journals carry a

weekly recreational problem.
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