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Seeing an Exercise as a Single
Mathematical Object: Using Variation

to Structure Sense-Making

Anne Watson
Department of Educational Studies

University of Oxford

John Mason
Centre for Mathematics Education

Open University

In this theoretical article, we take an exercise to be a collection of procedural ques-
tions or tasks. It can be useful to treat such an exercise as a single object, with individ-
ual questions seen as elements in a mathematically and pedagogically structured set.
We use the notions of dimensions of possible variation and range of permissible
change, derived from Ference Marton, to discuss affordances and constraints of some
sample exercises. This gives insight into the potential pedagogical role of exercises,
and shows how exercise analysis and design might contribute to hypotheses about
learning trajectories. We argue that learners’ response to an exercise has something in
common with modeling that we might call micromodeling, but we resort to a more in-
clusive description of mathematical thinking to describe learners’ possible responses
to a well-planned exercise. Finally we indicate how dimensions of possible variation
inform the design and use of an exercise.

When we are working with novice and experienced teachers on issues concerning
lesson planning, we start from consideration of what learners might do, what they
might see, hear and think, and how they might respond. Learners’ perceptions of
what is on offer in the mathematics classroom are the central starting point for con-
sidering learning. These include perceptions of social, cultural, and environmental
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aspects of the classroom as well as mathematical content, and of course all of these
are subject to interpretations arising from past experience and social, cultural, en-
vironmental, and mathematical dispositions and practices.

Our focus for this article is on the predictability of learners’ mathematical re-
sponses to mathematical tasks. Our assumption about learning is that the starting
point of making sense of any data is the discernment of variations within it (Marton
& Booth, 1997). Because discernment of variation takes place in a complex world,
with emotional and social as well as cognitive components, nothing is absolutely
predictable. However, we are going to claim that tasks that carefully display con-
strained variation are generally likely to result in progress in ways that unstruc-
tured sets of tasks do not, as long as learners are working within mathematically
supportive learning environments.

The notion of a hypothetical learning trajectory has been used as a technical
term to describe part of the act of planning lessons (Simon & Tzur, 2004). Here hy-
pothetical means conjectured rather than simply theoretical. At the micro or
fine-grained level of task design and implementation we prefer to work with what
can be observed in the space of a lesson and so refer to a hypothetical or conjec-
tured (learner) response. Learning cannot generally be predicted or identified in
discrete chunks of time, say over one activity, or one lesson, or in a particular task
sequence; this is why psychologists often use the research practice of delayed
post-testing. Learning takes place over time as a result of repeated experiences that
are connected through personal sense-making (Griffin, 1989). All we can know in
one lesson is something about learners’ expressed responses.

Although the notion of learning covers a broad spectrum from factual acquisi-
tion through conceptual reorganization and schema development to alteration in
predisposition and perspective, the learning of particular interest to us here is con-
ceptual development. This means to us that the learner experiences a shift between
attending to relationships within and between elements of current experience (e.g.,
the doing of individual questions) and perceiving relationships as properties that
might be applicable in other situations (Mason, 2004). Thus, for us, a mathemati-
cal concept is constructed by a learner. For example, a learner might begin to con-
struct a concept of “nine-ness” by naming and expressing properties observed
when nine is subtracted from various numbers. The teacher hopes that these con-
structions will eventually match a conventional canon of developed and refined
concepts, as she understands them, but the process is essentially bottom-up rather
than top-down (Barsalou, 1998). Several different experiences in which a learner
may detect similarities, and may hence conceptualize about the similarity, are nec-
essary for such matching (Zawojewski & Silver, 1998).

Learning mathematics involves long-term conceptual development, advances in
abstract understanding, and improved applicability. Learning does not take place
solely through learners observing some patterns in their work, even if they have gen-
eralized them explicitly. Indeed, pattern-spotting, generalizing, and reproducing
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patterns are merely ways in which sensate beings make sense of any succession of
experiences. Learners can do this by focusing on surface syntactic structures rather
than deeper mathematical meaning—just following a process with different num-
bers rather than understanding how the sequence of actions produces an answer.
Even in a highly structured situation in which most learners appear to arrive at the
same end point using apparently identical data, different learners may have had dif-
ferent experiences along the way, as we shall illustrate later. But experiences have
taken place through such engagement with pattern that may contribute to progres-
sion in understanding a particular concept as understood by the teacher.

The metaphor of learning trajectory (Clements & Sarama, 2004), which seems
to assume predictable and sequential development in the conventional canon, is
challenged by the variety of responses learners make to events in a lesson se-
quence. Even the hypothetical version offered by Simon and Tzur (2004, p. 100)
seems to assume that something sequential can be said about learning, but in our
experience this over-simplifies the responses to experience that can occur in or out
of a classroom. Nevertheless, when planning, thinking in terms of hypothetical
learning trajectories (HLTs) may contribute to teacher-confidence, giving them at
least a place to start. To a certain extent, any lesson plan involves an implicit, if not
explicit, sense of possible experiences that it is to be hoped each learner will trans-
form into a personal learning trajectory. After all, teaching takes place in sequen-
tial time, even though learners take different trajectories. The approach to planning
tasks that we are going to describe has some features in common with HLTs and
with the similar design activity described by Gravemeijer (2004) but we use math-
ematical variation to hypothesize microresponse rather than cognitive theories to
hypothesize learning.

HLTs provide teachers with tools to promote learning of particular conventional
understandings of mathematics. Simon and Tzur (2004) focus on designing se-
quences of tasks that invite learners to reflect on the effect of their actions in the
hope that they will recognize key relationships. Recognizing that these conven-
tional understandings, which are the goals of mathematics teaching, are all gener-
alizations of relationships between variable objects, whether they are examples of
algorithms, concepts, and so on, leads us to suggest that the generalizations that
support the intentions of lesson plans might be more usefully seen as the possible
outcomes of micro-modeling. By micro-modeling we mean the processes of trying
to see, structure, and exploit regularities in experiential data, so that learners are
thus exposed to mathematical structure affording them enhanced possibilities for
making their own sense of a collection of questions, or an exercise. In other words,
can exercises be constructed in such a way that desirable regularities might emerge
from the learners’engagement with the task, like categories emerging from experi-
mental data? Posing this challenge invites a further, more pragmatic question:
What regularities are available to learners and which are most likely to be observed
in any given task?
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The modeling perspective described by Lesh and others draws on learners’ nat-
ural desire to engage with and make sense of experiential data (Lesh & Doerr,
2003). It is also natural for learners to test their ideas as much as they need to for
personal conviction or to make continued exploration possible. “Model-eliciting
activities” (Lesh & Yoon, 2004) harness this kind of response to promote learners’
engagement with mathematical ideas through making sense of mathematically
complex problematic situations. However, to make mathematical progress the re-
sults of the images, models, and generalizations thus created have to become tools
for more sophisticated mathematics. We see generalization as sensing the possible
variation in a relationship, and abstraction as shifting from seeing relationships as
specific to the situation, to seeing them as potential properties of similar situations.
Any task, particularly problem solving and modeling tasks, can focus learners’ at-
tention to the immediate “doing” (calculations, representation, etc.) but unless spe-
cial steps are taken to promote further engagement, there is seldom motivation for
abstraction, rigor, or conceptualization beyond that necessary for the current prob-
lem, a point recognized by Burkhardt (1981). Doerr also recognized this possible
limitation and offered sequences of tasks through which learners shift from creat-
ing models of carefully chosen situations, to seeing those models as embodying
structures that may find future application, and also for exploration as structured
mathematical objects in their own right (Doerr, 2000).

Teachers cannot even be sure that learners will use the most recently-met ideas
for their modeling work, or engage with structure, particularly if the teacher is
playing a nonintervention role for some reason (Baroody, Cibulskis, Meng-lung, &
Xai, 2004). For example, the diagonal distance across a rectangular space might be
measured or estimated even if Pythagoras’ theorem has been recently “learned.”
Burkhardt (1981) suggested that learners are unlikely to use spontaneously a tech-
nique, method, or perspective that they first encountered more recently than a year
or two.

Apart from these features, a modeling approach offers a reasonably informative
description of learners’sense-making in any mathematical task, in that they engage
with a range of experiential data and attempt to construct meanings that are then
tested out against expectations, perceived implications and eventually, future expe-
rience. At a mundane level, this means that attempts to answer closed questions are
checked out against the teacher’s answers; at a sophisticated level, concept images
are consciously adapted and enriched as more examples and implications are en-
countered. Because experience depends on the learners’ perceptions of the mathe-
matical tasks offered by a teacher or other authority, it seems appropriate to con-
sider whether these can invite abstraction as a natural sense-making response. We
claim that if the teacher offers data that systematically expose mathematical struc-
ture, the empiricism of modeling can give way to the dance of exemplification,
generalization, and conceptualization that characterizes formal mathematics. For
this claim we make the same assumptions as those required for modeling, namely
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that learners cannot resist looking for, or imposing pattern, and hence creating gen-
eralizations, even if these are not expressed or recognized. These generalizations
are then the raw material for mathematical conceptualization.

ANALYSIS OF RESPONSES TO AN EXERCISE

To illustrate how paying attention to variation can illuminate our understanding of
learners’ responses to sequences of questions, we use an exercise written by
Krause (1975/1986) to teach taxi-cab geometry. At first glance it appears to be of a
typical “do a few examples” kind but there is rather more sophistication than is first
apparent. In his textbook, Krause does not say in advance what the exercise is
about. To understand what follows, we advise the reader to do the task.

Dt(P, A) is the shortest distance from P to A on a two-dimensional coordinate
grid, using horizontal and vertical movement only. We call it the taxicab distance.

For this exercise A = (–2,–1). Mark A on a coordinate grid. For each point P in
(a) to (h) below calculate Dt(P, A) and mark P on the grid (in the original, they are
in a single column so there is no temptation to work across rows instead of in order
down the columns):

We have used this task with many groups of inservice and preservice teachers,
primary and secondary, and with two differently-aged classes of school students—
about two hundred people in all. Afterwards we asked them to report on their expe-
riences in group discussion and we made notes of what was said. On two occasions
we supplemented this with requests for written comments and we have also had
verbal reports from people who have then used the task with other teachers and stu-
dents. In this way we have collected, over 3 years, a comprehensive qualitative pic-
ture of learners’ reactions to this set of questions. In nearly every case the word
“learner” is appropriate because very few of the participants had worked with taxi-
cab geometry before.

Our approach is consonant with the development of grounded theory through
naturalistic inquiry (Lincoln & Guba, 1985) concerning response in the natural set-
ting of groups of people learning new mathematics, from a textbook exercise, in an
interactive environment. It can also be seen as a form of action research, because
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each use of a task is informed by our past and current experiences of participants’
thinking. What we present here can be taken as a form of phenomenographic anal-
ysis of observations arising from semiformal action research. The result is a colla-
tion of as complete a story as possible of the varieties of ways in which people have
responded. Our conjecture is that past responses provide us with a good prediction
of how people in the future are likely to respond. This conjecture is strengthened
by the proximity of a theoretical mathematical explanation of likely response to the
actual response as reported.

There was variation in the order in which people carried out the exercise: Some
chose to plot all the points first and then calculate all the distances, others chose to
calculate all the distances and then plot all the points, others did each point sepa-
rately, finding the distance and plotting the point as Krause (1975/1986) suggested.
Whichever way they did the exercise, those who had not met this material before
reported remarkably similar experiences or, at least, reported their experiences in
remarkably similar ways. They found themselves making generalizations early on
in the exercise: such as, that all the distances will be 3 and that all the points ap-
peared to be on a “straight line.” Many were not even aware they had a generalized
expectation until the “straight line” broke down at the seventh point (g). Their evi-
dent surprise revealed the presence of implicit conjectures and expectations, typi-
cal of the role of disturbance in triggering sense making and possibly learning
(Mason & Johnston-Wilder, 2004, p. 118, 149). The break in pattern caused many
to begin to think about the mathematics behind what they were doing. They found
themselves asking more probing questions such as “where would I expect points to
be that are all a distance of 3 away from A?” or “what has this straight line got to do
with a distance of 3?”

For completeness, we also report that some people did not immediately know
what to do with noninteger coordinates, but used what they found from the first
four points to interpolate and reach an interpretation that “seems to work.” Many
people also reported that they became quicker with each successive point, that they
became more eager because they wanted to know what was going on, and that
where they made errors they were able to self-correct because the inherent patterns
caused possible mistakes to become obvious. Thus fluency, motivation and accu-
racy appeared to result from the exercise.

The next question Krause (1975/1986) posed in his book asks learners to make
up more points P that have Dt(P, A) = 3, to graph them, and to describe the com-
plete set. In our experience, many learners did this for themselves before they were
asked to by the textbook. The next question, therefore, merely asked them to ex-
press what they had already deduced and reaffirmed an enquiry-based stance to
mathematics as a constructive enterprise (Watson & Mason, 2005).

But the main purpose of the exercise is not to get better at calculating distances
and plotting points nor to learn about Dt(P,A) = 3. Almost unanimously, people re-
ported that this exercise evoked their natural propensity to look for similarities and
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to make conjectures to “teach” them something about taxicab geometry; that they
started by just “doing” each separate point but were jolted into thinking mathemat-
ically by being offered points that broke their current sense of pattern; and that they
had not realized they were aware of pattern until they were offered these points.
Thus the combination of several similar examples and further not-quite-similar ex-
amples shifted them to work on a higher level than simply plotting and calculating,
leading to conceptual learning as well as fluency, accuracy, motivation and inter-
est. Many found that their knowledge of Euclidean circles came to mind and this
amplified their interest. This did not happen for everyone, possibly because not ev-
eryone had a well-developed definition of a circle, as the locus of a point equidis-
tant from a fixed point, readily available.

A few people operated at a higher level throughout the exercise. As soon as they
completed the second example they were already asking themselves “why 3?”
(seeing 3 as a dimension of possible variation that has been fixed for some reason,
not simply as an accidental number). Some did not plot points at all, assuming this
to be some visual extra that the “teacher” required but that they did not themselves
need; some of these proceeded to try to generalize algebraically. We have found
very few other ways of responding to this exercise, and no examples of people who
claimed to have merely performed the required tasks without voluntary conjectur-
ing and predicting.

ANALYSIS OF VARIATION IN THE EXERCISE AS GIVEN

What intrigues us, given the very different backgrounds, mathematical knowledge,
goals, and social contexts of the groups with whom we have worked, is that there is
an almost universal global response to the exercise, an articulation of taxi-cab cir-
cles. The structure of the local responses, contributing to the global response, var-
ies according to the sequence in which the individual tasks are undertaken. It is the
structure of the exercise as a whole, not the individual items, that promotes individ-
ual disturbance and common mathematical sense making. Marton’s identification
of “dimensions of variation,” initially used as a way to characterize differential
learning, offers a way to look at exercises in terms of what is available for the
learner to notice (Marton & Booth, 1997; Marton, Runesson, & Tsui, 2004). This
particular strength of Marton’s variation theory provides us with the means to jus-
tify in mathematical terms our empirical observations of learning. Applied to
mathematics it provides ways of describing learning, for relating learning to math-
ematical structures as afforded to, and perceived by, learners whether intended by
the teacher or not. Applied to mathematical text, this approach offers a structured
and structural approach to exposing underlying mathematical form. Variation is
also a tool to scaffold the construction of different tasks that are conceptually re-
lated (Zawijewski & Silver, 1998).

EXERCISES AS MATHEMATICAL OBJECTS 97

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
O
x
f
o
r
d
]
 
A
t
:
 
0
6
:
2
6
 
1
4
 
A
p
r
i
l
 
2
0
1
1



We therefore analyzed the exercise to find out what variations were available to
be discerned by the learner and when. Our analysis would vary slightly according
to the way someone chose to approach the exercise, so here we shall focus on the
case in which a learner both calculates and plots each point in turn. We look at what
aspects are fixed, what is varied (different aspects constitute different dimensions
of possible variation), and how it is varied (which indicates a range of permissible
change) throughout the exercise, and what is thus available for discernment by the
learners, agreeing in part with Runesson and Mok who said: “If the particular as-
pect is present as a dimension of variation, it is likely to be discerned” (2004, p.
218). We would modify this slightly and claim that such an aspect is more likely to
be discerned if its variation is foregrounded against relative invariance of other fea-
tures. If everything is varying, nothing may be discerned. More recently, Runesson
says “the enacted object of learning reveals the space of variation and invariance
that is possible for the learner to experience” (2005, p. 85)

Point A is fixed, hence the learner can focus on comparing relationships to A,
rather than having to take pairs of points into account. With too many things vary-
ing, individual variation is obscured and learners may form an impression of jump-
ing about randomly if they are aware at all of a potential example space (Watson &
Mason, 2005) from which the tasks are drawn. Later, A can be varied to generalize
such relationships. The point A is not obviously special, so it might in some sense
stand for any generic point but it might also have some hidden particularities which
would need to be distinguished. If (0,0) had been chosen—a somewhat special
point—learners may not see anything that happens as a generality.

The first three points P fix Dt(P, A) as 3. In this case, the fixing of 3 is essential
to the mathematical plan; the dimension of possible variation has been constrained
to points whose distance from A is a constant. Most report that the answer “3” be-
comes an expectation quite quickly and, eventually, their work shifts from “calcu-
lating distance” to “verifying that the distance is 3.” An elementary conjecture has
emerged from the subconscious based on something varying and something rela-
tively invariant. The range of change used so far is restricted to integer coordinates,
positive and negative. The fourth point provides a confirmation that the points ap-
pear to be visually in a straight line, and so offers a self-checking opportunity. The
fifth point alters the range of permissible change from integer coordinates to frac-
tions but within a context that provides ways to conjecture and test how these are
interpreted. By this time, most people have decided that the answer they have to
make is 3, and the points are going to make a straight line.

Then comes the point (0, 0). This is a familiar point, so not one that is expected
to cause any difficulty in itself but definitely one that is not on the straight line. It is
not unusual for people to make little noises when they get to this point, indicating
surprise, puzzlement, or a sense of error. Until now, the two possible generaliza-
tions have been that the points have been chosen so that the distance of 3 is fixed,
and the position on a particular straight line. It has even been possible to conjecture
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a relationship. But Krause (1975/1986) knew that the full range of permissible
change for points that are a distance 3 away from A has not, at this point, been en-
countered or exposed, and hence people may be tempted to make unwise or incom-
plete generalizations. The inclusion of (0, 0) makes it possible to discern a differ-
ence between the shape of the locus and a straight line, yet the straight line
conjecture allows learners to cope with fractions and set up an expectation that al-
lows difference to be noticed.

The final point gives more information about what shape might emerge and
Krause (1975/1986) stopped there, leaving space for learners to think for them-
selves and to make up their minds about what else might happen. There is still the
position of point A that can be varied and the fixed distance but the central general-
ization about the locus may have already been made through the development of
what, at first sight, were “practice” examples.

This analysis of what is possible at each stage of the exercise matches almost
exactly the reported experience of the majority of people to whom we have offered
it, although the order might vary according to the order of doing the task or the way
different people focused on different features. It matters whether they focus on di-
mensions of variation (variables) or ranges of change (values) at various stages in
the exercise. This is reminiscent of Krutetskii’s (1976) distinction between those
students who worked on variables and those who worked with value but here we
could not claim that those who worked on variables were any more “gifted” than
those who stayed with value, because both approaches appeared in every group.
People do not necessarily use the most sophisticated techniques available to them
in novel, public, situations. Further differences are experienced by people who
have leapt to a level of abstraction much earlier than the exercise expects or those
who have restricted themselves to a purely algebraic approach. Yet people display-
ing these exceptions ended up with a similar understanding of taxicab “circles” as
others, albeit by a different route or pathway, and each had different experiences
along the way, drawing in and developing different skills, awareness and ancillary
knowledge.

We do not underestimate the role of discussion, which was always a genuine at-
tempt to learn about learners’ experiences but also provided a model and structure
for reflective abstraction that otherwise may not have taken place for some people.
A full analysis of the potential offered by the task has to include the discussion that
followed. However, rather than asking “what did you notice about the maths,” as if
there was an intended answer in our minds, we asked “what was your experience as
a learner?” No one can invent stories of variation, generalization, and so on that
they have not in some way imagined or experienced, even at a metalevel. Percep-
tion, conscious or subconscious, must precede articulations about perception
(Barsalou, 1998).

The close relationship between Krause’s (1975/1986) choice of dimensions of
variation and associated ranges of change, and the learning experiences of those
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doing the exercise, suggests that he had in mind that all learners would encounter
taxicab circles, and that the route through which they met them could involve a per-
sonal mixture of spatial, numerical and symbolic experiences, practice of tech-
niques, visualization, conjecture, generalization, expectation, surprise, conceptu-
alization, and affirmation. We do not know how long it took Krause (1975/1986) to
develop this exercise but such artistry and precision in helping a learner learn does
not come instantly. Constructing tasks that use variation and change optimally is a
design project in which reflection about learner responses leads to further refine-
ment and further precision of example choice and sequence, as Gravemeijer (2004)
described. This process cannot be done by textbook authors working alone under
tight publication deadlines but it can be done by teachers for themselves. Hewitt
(2003), commenting on the effectiveness of a lesson that was videoed for national
distribution, took care to point out that that particular lesson drew upon many years
of experimentation, honing the tasks with a wide range of learners until he could be
confident that it would “work” with virtually any group of learners. As already
mentioned, there are no guarantees, no matter how carefully an exercise is struc-
tured, because of the many other relevant factors influencing the situation. That
said, greater commonality can be achieved through careful structuring than
through apparently random collections of questions treated as individual tasks by
learners. Hewitt’s tasks typically involve far more repetition of linguistic and sym-
bolic structures, with focused and controlled variation, than any textbook provides.

We are not claiming that there can be a deterministic, unproblematic, relation-
ship between teaching and learning. What is actually discerned in any situation,
out of all the varying features, is dependent on dispositions to engage with mathe-
matics, prior experience of mathematical practices, current conceptualizations, so-
cial and affective aspects of the situation, and much more. What we are claiming is
that, if the intention is that learners should understand, say, the invariance of sine
for a fixed angle, it makes sense to keep the angle and hence the ratio constant
while changing other features so many times that the invariance of the ratio be-
comes more and more insistent and obvious in students’ perceptions. The general-
ization that “opposite is related to hypotenuse in some way” (or equivalent expres-
sion in algebraic or diagrammatic form) then becomes a property of right-angled
triangles to explore. The angle can now be varied, while other features are kept
constant, so that the nature of the covariation of “opposite” and hypotenuse be-
comes more and more obvious—a property of angles that can eventually be named
and discussed and compared to other properties. Thus the mathematical relation-
ship between variables can be exploited as a pedagogical experience and tool.

EXERCISES SEEN AS MATHEMATICAL OBJECTS

We use the word object to mean “that which is the focus of attention,” somewhat in
the way in that Barnard and Tall (1997) use cognitive unit. In some senses this re-
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lates to Marton’s use of the phrase object of learning (Marton & Booth, 1997) but,
for us, the object is not necessarily an objective, either for the learner or the teacher
nor is it necessarily a mathematical object in the sense that it has been convention-
ally defined and has a meaning delineated by mathematical and linguistic pro-
cesses. Rather, we use it to mean a thing on which a learner focuses and acts intelli-
gently and mathematically by observing, analyzing, exploring, questioning,
transforming, and so on. Thus an object could be a symbol, some text, a diagram, a
theorem, a line of a theorem, a material object, an equation and so on. It is the
“this” for which a teacher might say “look at this” or for which a learner might say
“I am looking at this” or even “I am thinking about this.” It will be immediately
clear that the teacher cannot fully control what becomes an object for a learner. A
teacher could think that a complete worked example is the object to which her stu-
dents are attending, while a well-engaged learner might read one line of it over and
over again and thinking “what on earth does that mean,” or “where did that come
from,” thus having that line or symbol as the object. A teacher might think that the
slope of a line relative to the x-axis is the object to which students are attending,
while a well-engaged learner might be attending to the position of the intersection
of the line and the axis. (The cursors in dynamic geometry software are better at
asking “what am I supposed to be looking at” than the average student.)

The actions that the learner brings to this observation and exploration are at the
very least the natural propensities to observe variation and similarity, and to seek
pattern in the variation, either by identifying or imposing pattern on the experience
of perception, and relationships between this variation and others in their experi-
ence. Perceptions of objects and their associated patterns are starting points for the
more complex actions of meaning-making that involve experience, context, dia-
logue, enthusiasm and so on.

For example, in this sequence: 1, 2, 3,… the shapes of the symbols change
wildly from one element to the next whereas in this sequence: /, //, /// … the
changes of shape are systematic and easier to observe, to describe, and to imbue
with meaning. But 10 or 20 terms along, numerals start to be much easier to deal
with than tally marks! We know that learning mathematics includes understanding
that the meanings in the first sequence transcend concern about the shapes of the
symbols but agreement about variation in what we can observe in the latter case is
more universal than in the former. Marton’s focus on variation gives us a language
for saying why this is, namely that the only variations in the second case are fre-
quency and position, whereas in the first case variation is very hard to describe. In-
deed, those children who claim that the symbol 1 has one “pointy bit,” 2 has two
“pointy bits,” and 3 has three “pointy bits” are following a natural desire to impose
pattern in an attempt to construct meaning. Of course it matters where attention is
focused and we have used the word “shape” to guide the reader towards a dimen-
sion of possible variation. Even so, one could have chosen to focus on the curves
rather than the points or lines. If we had suggested “value” as a focus the analysis
would be more complex, because value is symbolically represented in the first se-
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quence and thus socially and discursively constructed but iconically represented in
the second. To perceive the sequences in terms of value requires interpretation and
knowledge.

It does not matter for the purposes of our discussion whether these characteris-
tics are seen in a Platonic sense as having an existence outside the learner or are
brought into being by the learner’s perception, through the learner having a point
of view (Dorfler, 2002), or as the duals of process (Gray & Tall, 1994; Tall,
Thomas, Davis, Gray, & Simpson, 2000). All we need to know is that learners
discern differences between and within objects through attending to variation.
Teachers can therefore aim to constrain the number and nature of the differences
they present to learners and thus increase the likelihood that attention will be fo-
cused on mathematically crucial variables. Further, we can treat a set of objects as
an object in its own right (Dorfler, 2002, p. 344) and see variations within it as its
properties.

Here are three contrasting examples of exercises in which learners have to find
the gradients of straight line segments between two given points on coordinate
grids, and represent them on a diagram. Again, we have offered these exercises to
several groups of teachers and teacher educators to learn more about the range of
possible reactions:

Gradient exercise 1: Find the gradients between each of the following pairs
of points.

(4, 3) and (8, 12) (–2, –1) and (–10, 1)

(7, 4) and (–4, 8) (8, –7) and (11, –1)

(6, –4) and (6, 7) (–5, 2) and (10, 6)

(–5, 2) and (–3, –9) (–6, –9) and (–6, –8)

(8, 9) and (2, –9) (7, –8) and (–7, 5)

(–9, –7) and (1, 4) (–4, –3) and (4, –2)

(2, –5) and (–3, –7) (1, 6) and (–1, –3)

(–1, 0) and (5, –1) (–3, 5) and (–3, 2)

Gradient exercise 2: Find the gradient between each of the following pairs of
points.

(i) (4, 3) and (8, 12) (ii) (–2, –3) and (4, 6)

(iii) (5, 6) and (10, 12) (iv) (–3, 4) and (8, –6)

(v) (–5, 3) and (2, 3) (vi) (2, 1) and (2, 9)

(vii) (p, q) and (r, s) (viii) (0, a) and (a, 0)

(ix) (0, 0) and (a, b)

(Adapted from Backhouse & Houldsworth, 1957)
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Gradient exercise 3: Find the gradient between each of the following pairs of
points.

(4, 3) and (8, 12) (4,3 ) and (4, 12)

(4, 3) and (7, 12) (4, 3) and (3, 12)

(4, 3) and (6, 12) (4, 3) and (2, 12)

(4, 3) and (5, 12) (4, 3) and (1, 12)

In the first exercise the variation of signs is controlled so that all possible pairs
occur but numbers and relative values vary, and there is little apparent system even
in the variation of signs. A diagram would add little sense to the variety that is pro-
duced and it is not clear that the concept of gradient, as a slope property, would be
the focus of attention. It is more likely, because the variation is in the signs, that
subtracting and dividing directed numbers will be the focus. In the second exer-
cise, there is selective practice of various possibilities followed quickly by an invi-
tation to write gradient as a formula, expressing a generality that the learner must
already know to do the earlier questions. This is then followed by questions about
special cases of the formula, so that we can see the author is intending generaliza-
tion of gradient calculations to be the focus. In the last exercise, variation is tightly
controlled by only varying the x-coordinate of the second point. Some technical
practice is offered but this breaks down when the x-coordinate is 4 because this
means you have to divide by zero. An accompanying diagram would help to make
sense of this. Some have found the third exercise too constrained for the develop-
ment of technical fluency, even boring, while others have found that it is the most
interesting of the three because it invites questions and further exploration and in-
cludes a little shock that does not yield to an algorithmic approach. The focus is on
varying gradient in a controlled way so that gradient changes from being a name
for the answer to a calculation, to being a relationship, to being a property and also
an arena for conjecture.

By asking the highly mathematical question “what changes and what stays the
same?,” and by examining the nature of the changes offered, we can be precise
about what an exercise together with an established way of working (collection of
social practices) affords the learner and with what constraints (Greeno, 1994; Wat-
son, 2003, 2004). Each of the previous exercises affords a different kind of gener-
alization and learners’ engagement with gradient as a concept will be influenced
by what they can easily generalize from the exercise.

MICROMODELING AND MATHEMATICAL THINKING

Lesh and Yoon (2004) proposed that model-eliciting activities provide situations
for learners to make mathematical sense. Sense is made by identifying objects, re-
lations, operations, transformations, patterns, regularities and quantifying, di-
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mensionalizing, coordinating, and systematizing them, using problem-solving
strategies, often organized heuristically (p. 210). This list of characteristics and
activities sounds to us like a remarkably comprehensive description of mathemati-
cal thinking (Mason, Burton, & Stacey, 1982; Watson & Mason, 1998). Further-
more, every part of it can be applied to situations that are entirely mathematical and
not contextualized externally at all. For example, the concept of linearity can be de-
veloped through modeling data that is generated by situations known already by
the expert to be linear, such as coordinate pairs, families of graphs, and equations
that look similar in form, in addition to covariation of particular “real life”
variables.

Opportunities to practice skills, to select and represent variables, to express re-
lationships and generalities, to gain mathematizing tools with which to engage
economically and critically with the world, are overwhelmingly present in model-
ing activities. What is often lacking is, first, any guarantee that new mathematical
ideas will be encountered without the intervention of a mathematically-aware ex-
pert redirecting learners’ attention and, second, opportunity for purposeful en-
trance into the abstract world of mathematics. Learners may have experience of
mathematical processes, may have consolidated and reorganized what they al-
ready know and may be creative in its application but may not have extended their
knowledge of the conventional mathematics canon. Typically, their attention will
have been on the range of possible change within the dimensions of variation of-
fered by the modeled situation; the generalities that guide their exploration might
be the generalities of shopping, or weather, or sewing, or whatever the modeling
context is, rather than the generalities of mathematics. To engage fully with mathe-
matical structure, it is the dimensions themselves and how they interrelate that
have to become the focus of attention. To make this shift requires a move away
from the structures afforded by the modeled situation but there may be no motiva-
tion within the modeling activity to engage with what has been produced in a more
abstract way.

The term “modeling” gives an invigorating picture of the messy, cyclic, human
activity that is seldom made explicit in classrooms while pure mathematics is go-
ing on but to extend its use to include everything else that is involved in learning
mathematics seems to us to lose the power achieved by restricting its use to moving
from material world phenomena to mathematical representations. From a model-
ing perspective the term “micromodeling” may be helpful to describe learners’ re-
sponse to exercises in which dimensions of variation have been carefully con-
trolled, because the aim is to promote generalization of the dimensions being
varied in the exercise, and thence to focus on mathematical relationships between
dimensions. To move beyond that initial generalization to more abstract engage-
ment with the concepts, such as moving from taxi-cab geometry to metric spaces
or moving from calculating straight line gradients to considering gradient func-
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tions, requires an approach to task design that goes beyond modeling, one that har-
nesses further processes of abstraction. Exercises that offer controlled variation
have the potential to lay the groundwork for rapid engagement with structure, rela-
tionships, and properties.

PUTTING VARIATION INTO PRACTICE

Teachers and textbook authors typically describe the use of repetitive exercises as
providing “practice” for learners, often without stating what such practice is sup-
posed to achieve. Practice can mean the use of repetitive tasks to build up fluency,
speed, and accuracy in performing technical tasks. The importance of this in math-
ematics has long been recognized, from the use of Vedic sutras for arithmetic (Jo-
seph, 1991), through Mary Boole’s urgings to use subconscious powers (Tahta,
1972), to Hewitt’s search for economy in learning repeated actions (Hewitt, 1996).
However, many textbook exercises do not seem to offer practice of this type at all.
Questions are more likely to be slightly different in a seemingly arbitrary way so
that learners tend to proceed in a stop–start fashion.

Consider this selection of textbook questions on ratio:

Reduce to simplest terms:

(From Lerman, 2001)

The authors presumably hope that the learner will learn about a variety of forms
of ratio but the specific instruction is to express the ratios in simplest form. To get
the answers the learner does not have to focus on notation, meaning or representa-
tion, merely on finding common terms to cancel. The exercise can be completed
without any engagement with the ratio concept. It can also be completed without
any increase in fluency because each question is different enough to need some
fresh thinking. In classrooms, we observe that such exercises seem to result in a
slowing down of pace and an increase in effort, rather than speeding up and re-
duced effort, unless teachers explicitly engage learners with the goal of getting
faster and becoming “experts.” Without some pedagogic intervention little can be
achieved except for counting the right answers and the analysis of errors to inform
future teaching.
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The following is adapted from a larger exercise in Tuckey (1904):

Multiply each of the terms in the top row by each of the terms in the bottom
row in pairs:

Apart from being a simple way to produce a long exercise, this appears to offer
enough similarity to encourage fluency and some awareness of, and control over,
change that may allow learners to get a sense of underlying structure while doing
the examples. It is not sufficient just to “do” all the products. Learners need to con-
template relationships, to consider effects of changes in one particular aspect (e.g.
the sign). If the actual multiplication takes time, learners may not experience these
variations and their effects, because there is too much time between one result and
the next. In Tuckey’s exercise there is sufficient similarity in the calculations and in
the appearance of the algebra that regularities can easily be experienced and,
through discussion, brought to articulation.

A well-wrought example of this approach is demonstrated by Yizhu Liu (2004)
in his interpretation of Marton’s theory, used to design a series of textbooks in
China. Readers are typically offered a range of similar but slightly different mathe-
matical situations and asked an exploratory question from which a generalization
is invited. The generalization is arrived at by comparing variations in their observa-
tions. To enable learners to relate the new idea to their previous experiences they
are then asked to compare the new and old concepts in some way–for example,
when absolute value is introduced they are asked to describe similarities and dif-
ferences between, say –2.5 and |–2.5|. The exercise deliberately directs the learner
towards classification, towards comparing the “new” idea of modulus to the famil-
iar idea of number. Doing this for a few examples provides territory for making an
initial conjecture and verifying or refining it. In this kind of “contrastive” question
learners note variations and similarities between the new and old concepts.
Learners have to step back from mere calculation to look for relationships and
invariants but the relationships are very easy to perceive.

A further example found in a typical elementary school textbook provides sub-
traction practice of this kind:

Clearly the aim here is more than repeated use of a subtraction strategy. The
whole exercise is intended to be the object of study. Learners are likely to begin to
develop a concept of “nineness,” particularly if the teacher supports this move.
Without this support, learners who have not developed the habit of reflecting on
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work done and conjecturing about relationships may notice something special but
might not realize that this kind of noticing is the essence of mathematics.

FUTURE QUESTIONS

When we describe the potential power of certain questions, prompts and task-
types, our aim is not to design lessons for teachers to use or even to design les-
sons with teachers. This would be simply unsustainable in most teaching situa-
tions. However, it is important to find out how accessible and practical these
ideas are for teachers so that they can design mathematical tasks without need-
ing to access research for each separate topic. We have not researched this sys-
tematically but have conducted informal trials with several novices and experi-
enced teachers who then put “exercise as mathematical object” into practice by
designing and using question sets with deliberate attention to dimensions of vari-
ation, as they understand it. We report this very briefly here to indicate future re-
search issues.

All the teachers had a training session in which the ideas were introduced and
demonstrated. All were enthusiastic; one experienced teacher, (who had a psychol-
ogy degree), said that the language of “variation” helped her describe why she did
not like textbook exercises that appeared to offer only random variation. All agreed
to construct exercises in which dimensions of variation were carefully controlled.
Some used deliberate strategies, such as selecting one attribute to be varied while
holding others constant (Brown & Walter, 1983), or selecting one variable to be
held constant while others vary systematically, or focusing on systematic genera-
tion of equivalent forms. Others acted more instinctively in topic-specific ways,
such as focusing on the emergence of special cases as surprises within varying sets
(Movshovits-Hadar, 1988).

All the teachers were able to design question sets that, on analysis, showed sys-
tematic attention to variation within the exercise as a whole so that correctly-per-
formed techniques were only the starting point for mathematization. For example,
one class was offered:

Simplify these:

6/10 18/20 6/8 14/16

Now simplify these:

15/25 45/50 15/20 35/40

Compare the answers
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Another class, also studying fractions, was given a set of questions in which “7”
was used as a generic placeholder, increasing in complexity:

Students’ comments were collected in this case and showed that the questions
they found most interesting were those where the role of “7” suddenly changed.
Learners’ attention moved from the details of the calculation to the multiplicative
relationships between numerators and denominators. They could see how the
questions had been constructed and saw more meaning in multiplying fractions
than they had before. It had been possible, in the earlier questions, to treat “7” as
merely a matching symbol that you had to “cross out” but later they had to rethink
what this “crossing out” was all about.

The role of “7” drew our attention to the powerful role that perception plays in
the discernment of variation. In all the examples we have given, direct perception
has been a key feature in all responses. It is “looking the same” or “looking differ-
ent” that seems to matter first; without visual similarity comparing underlying
meaning, or matching one representation to another, are less accessible activities
that need deliberate prompting.

Whereas these teachers had seen potential power in controlling variation in ex-
ercises, and had been happy, even excited, about using this as a design principle,
knowing more about impact on learning is going to take more experimentation and
longer immersion.

Our conclusions after 3 years of work in a range of natural settings are that con-
trol of dimensions of variation and ranges of change is a powerful design strategy
for producing exercises that encourage learners to engage with mathematical
structure, to generalize and to conceptualize even when doing apparently mundane
questions. This power is easily recognized by teachers, teacher educators and other
professionals in mathematics education. Variation and change can also be used to
analyze the affordances and constraints of exercises within particular settings and
situations (Watson, 2003, 2004).

We therefore offer the following processes for planning teaching sequences that
start from the learners’ perceptions of mathematical objects:

• Analysis of concepts in the conventional canon that one hopes learners will
encounter.
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• Identification of regularities in conventional examples of that concept (and
its related techniques, images, language, contexts) that might help learners
(re)construct generalities associated with the concept. Even an algorithm can
be seen as a generality.

• Identification of variation(s) that would exemplify these generalities; decide
which dimensions to vary and how to vary them;

• Construct exercises that offer micro-modeling opportunities, by presenting
controlled variation, so that learners might observe regularities and differ-
ences, develop expectations, make comparisons, have surprises, test, adapt
and confirm their conjectures within the exercise;

• Provide sequences of micro-modeling opportunities, based on sequences of
hypothetical responses to variation, that nurture shifts between focusing on
changes, relationships, properties, and relationships between properties.
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