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We focus on a ‘typical’ task in which students have to give a functional 
generalisation in algebraic form of a growing sequence of spatial 
structures. We analyse the contribution of this task to a coherent 
knowledge of functions. Despite a plethora of research about 
misconceptions and the teaching of functions, little is known about the 
overall growth of students’ understanding of functions throughout 
schooling. We aim to map the development of students’ understanding of 
concepts which contribute to understanding functions in two different 
curriculum systems: the UK and Israel. The research uses a survey 
instrument that was developed in collaboration with a group of teachers 
and the task for this paper is one of six that span several routes to 
understanding functions. Our data appears to contradict some other studies 
as well as to suggest conjectures about how students' willingness to use 
covariational reasoning depending to some extent on task features. 

Introduction 

The function concept is both an explicit and implicit foundation for advanced study in 
mathematics itself and as a tool in other subjects. The roots of function understanding 
do not consist of a single hierarchical pathway (Schwindgendorf, Hawks and Beineke, 
1992). This paper examines one small part of a project to construct a description of 
progression towards functions based on probing students’ understanding. The research 
has several stages and we are currently analysing the implementation of a survey 
instrument that is being used across two countries. 

Learning does not only depend on the written curriculum, it also depends on 
school and classroom context, teaching, and possibly on the level to which teachers 
are ‘functions aware’ (Watson and Harel, 2013) and on national expectations through 
assessment regimes. In order to juxtapose such national expectations we are working 
in two countries: UK and Israel. The curriculum in the UK has an informal approach 
to functions, not requiring a formal treatment until year 122 for those who continue to 
advanced study, but younger students will, for example, generalise sequences and 
meet input-output models as ‘function machines’. In the Israeli curriculum approaches 
to functions are more explicit for younger students and the word and the notation are 
introduced in year 7. All project teachers are ‘functions aware’ due to their self-
identified levels of mathematical knowledge. In this paper we outline our research 
approach and demonstrate its application to one task (out of six) in one national 
context (UK). Due to issues of gaining ethical approval the data collection from 
Israeli schools will take place in 2014. 

We developed a survey instrument over several design cycles working closely 
with teachers to adapt existing tasks and develop new ones (Wilmot et al., 2011; Swan 
1980). We then selected an optimal set of questions that addressed distinct routes to 
understanding functions that we had identified from the literature. The questions had 

                                                
2 We are using UK years in this paper.  
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to be accessible for students in years 7 to 13, and had to be completed in one lesson. 
This survey was implemented in two schools in the UK to provide data for analysis to 
learn about progression towards functions in secondary school, while being aware of 
grouping, teaching, curriculum, prior attainment, and other variables. The schools and 
teachers were similar in many ways (size, socio economic factors, ethnicity, stability, 
qualifications) but differences in spread of prior attainment in constructing teaching 
groups are likely to have an impact on learning.  

Spatial sequence generalisation tasks 

The findings we present in this paper are from a spatial growth pattern generalisation 
task. There is a considerable body of literature about such tasks, investigating either 
the processes of generalisation or the effects on algebraic understanding more 
generally (e.g., Carraher, Martinez and Schliemann, 2008; Dörfler, 1991; Radford, 
2006, 2008; Stacey, 1989). Many studies have been conducted to identify processes in 
building generalisations from spatial sequences. These studies vary in the types of 
patterns, the population studied and their perspectives and accordingly in the 
categories of generalisations they present. For example, Dörfler (1991) defined two 
types of generalisations: empirical, referring to the recognition of common features, 
and theoretical ‘systems of action’, identifying variables and expressing prototypical 
relations between objects. Radford (2006) identified three generalisation strategies 
used with patterns: algebraic generalisation: ‘grasping’ a commonality, generalising 
for all terms and forming a rule; arithmetic generalisation; and inferences based on 
local guesses. Rivera and Becker (2008) distinguish between constructive and 
deconstructive forms of generalisation. The constructive form results from perceiving 
figures as consisting of non-overlapping parts, exhibiting the standard linear form       
y = mx + b. The deconstructive form is based on initially seeing overlapping sub-
configurations in the structure and would lead to separately counting each sub-
configuration and taking away parts (sides or vertices) that overlap. Constructive 
generalisation seemed easier for middle school children to establish while 
deconstructive was more difficult to achieve. Stacey (1989) defined four main 
generalisation approaches: recursive; counting from drawing; searching for a 
functional relationship from a figure; and making an incorrect proportional 
assumption, using the ratio f(x) = nx, when the relation is f(x) = ax + b (b = 0). Most 
studies agree that students find it difficult to reach theoretical generalisations and that 
they tend to begin with a recursive approach to sequential data. In England recursion 
is often referred to as ‘term-to-term’ and a functional relationship as ‘position-to-
term’, where ‘position’ refers to sequential position. Several researchers claim that 
presentation influences approaches since presenting data in order can encourage a 
term-to-term approach (e.g. Stacey, 1989; Steele, 2008).  

The aim of these studies was to focus on obstacles to generalising the 
underlying function. It cannot be claimed, however, that students who succeed have 
any sense of functions, even though some authors describe this as a ‘functional 
approach’. As Dörfler points out (2008), these tasks only model particular kinds of 
function, those that are expressible as strings of arithmetic operations that relate to 
continuing patterns with integer inputs. To have a sense of ‘function’ would require 
variation and comparison of functions and their properties (Carraher et al., 2008). 

Our aim was not the same as these studies. We used a spatial sequence 
generalisation task as one of six tasks, all of which address components of the 
function concept. We expected this task to provide information about how students try 
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to identify relations when prompted to state different kinds of generalisation. By 
seeing what they use and how they try to generalise, whether successful or not, we 
can identify ways of attending to data and spatial information that might form a basis 
for future knowledge of functions. Spatial tasks can provide: early experience in 
modelling relations between two variables; opportunities to explore co-variation, 
relating to gradients and early calculus; experience in analysing simple functions in 
given domains; and experience in expressing input-output relations algebraically. Our 
analysis, therefore, does not imply preference for any approach. Dörfler (2008: 147) 
says that different approaches “... shed different light on the common underlying 
functional relationship.” For example, term-to-term perception is a plausible pre-
concept towards gradient if variation in the output variable is related to variation in 
the input variable to show some sense of co-variation (Carlson et al., 2002). As well 
as relating to gradient, co-variation fits well with modelling natural phenomena, 
where data typically consists of changes in a phenomenon. Position-to-term 
generalisation is a plausible pre-concept towards understanding that relations between 
two sets of numbers might (sometimes) be expressed as general algebraic ‘rules’. 
However, in spatial sequence tasks the position number may not be understood as a 
variable but merely as a label, so we do not assume that such tasks provide 
information about students’ understanding of variables. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. The task  

The task we used (see Figure 1) is a ‘typical’ spatial sequence task. The task 
was constructed to allow the students to achieve full generalisation gradually through 
different kinds of generalisation (Stacey, 1989). The language used was agreed with 
the teachers to ensure access and familiarity (for example you do not need to 
remember what perimeter means). With the above considerations in mind we tried to 

For the following geometric pattern, there is a chain of regular hexagons (meaning all 6 sides are equal):!!

 
1.  
For 1 hexagon the perimeter is 6. 
For 3 hexagons the perimeter is 14. 
For 2 hexagons the perimeter is _____________ 
For 5 hexagons the perimeter is _____________ 
Note: perimeter is the number of outside edges. 
 
2. Describe the process for determining the perimeter for 100 hexagons, without knowing the perimeter 
for 99 hexagons. 
 
3. Write a formula to describe the perimeter for any number of hexagons in the chain (it does not need to 
be simplified). 
 
You can use: p(n) =  
 
4. Explain why you think your formula in question 3 is correct. 
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disturb the normal outcomes of such tasks by not providing an ordered data table, thus 
preventing a quick response of spotting number patterns. We did not expect, 
therefore, to replicate the findings in which students try to construct from recursive 
reasoning. We assumed some familiarity with this task type which is ubiquitous in 
English schools and which might lead some to assume they need to find a position-to-
term relation. It is important to note that the previous survey task involved contextual 
sequential data and questions about rates of change, so students might be starting the 
task with sequential strategies in mind. 

Population 

The survey was given to year 7 to 13 classes from two schools with each school 
providing data from alternate years. We wanted data from a suitable spread of 
students in terms of their past attainment and asked each school to use their highest 
achieving class (called A) and a middle achieving class (called B) in each of years 7 
to 11 plus their advanced mathematics classes. The teachers provided random 
anonymised samples of 10 scripts from each class. In this way we received 20 scripts 
from each UK year 7 to 11 inclusive, and we also had 10 scripts from years 12 and 13 
(total of 120 scripts). 

Data analysis 

We looked for evidence of all attempts to make relationships between data items, 
since in these tasks such relations could contribute to understanding functions. The 
method of analysis was to code each student’s responses according to pre-concepts 
related to functions, whether used correctly or not. We then classified them according 
to approaches to functional reasoning evidenced across the whole sample. We also 
coded generalisation types. The analysis process was iterative and comparative. 

Student awareness of functionality through generalisation 

Analysis led to five categories of functional reasoning:  
 

a. No answer, often accompanied by “I don’t know”. 

b. No conceptualisation of functional relationship: Empirical methods involving counting. 

c. A correspondence approach to develop a general rule for the relation between the number of 
hexagons and the perimeter.  

d. A covariation approach to coordinate the two varying quantities – number of hexagons and 
the perimeter – while attending to the ways in which they change in relation to each other.  

e. A correspondence approach followed by a covariation approach: Expressing a 
correspondence approach when addressing the question of finding the perimeter of 100 
hexagons, and then, when asked to generate the formula for any number of hexagons, moving 
to covariation approach. 

 
 
Examples: 
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Category Response to Q2 Response to Q3&4 Year/ 
group 

1 b You can count up in 6 until 
you get to 100 

No response  
7 B 

2 b You count how many edges 
in the chain 

No response 9 A 

3 c Because the edges join up 
they all link together but the 2 
end hexagons have 5 sides so 
you do 5*2 then the hexagons 
in the middle have 4 sides so 
you do 98*4 then add the two 
together 

2*5, then how many hexagons 
in the middle of the end ones * 
4. Because if you had 3 
hexagons together the end 
ones have five sides 5*2 then 
the middle one has 4 so 1*4 
then add the answers together 
= 14. 

8 B 

4 c You would have to multiply 6 
(the number of sides) by 100 
(number of hexagons) = 600, 
because some sides are joined 
you have to take them away 

6*(number of hexagons) = 
[space] – number of joint 
sides. Because if you multiply 
the number of sides by number 
of hexagons and then subtract 
the number of joint sides it 
will be correct. 

 
10 A 

5 c Each edge hexagon has 5 
outside edges, and each 
hexagon between has 4. 
Therefore out of 100, 2 would 
contain 5 and 98 would have 
4. If p = perimeter and x = 
number of hexagon, p=4x+2. 

p = 4x+2. I can check it using 
values which I already know, 
like 1 and 2. P = 4 * (1) + 2 = 
6 for 1. P = 4 * (2) +2 = 10 for 
2. 

13  

6 d For the amount of hexagons, 
if you go up by one the 
perimeter goes up by four. 

4n+2. If you do 1 * 4 + 2 that 
= 6 and that is your answer 

8 A 

7 d You are adding 4 sides every 
time you add a hexagon, so 
you would multiply 4 by 100 
then minus 4 and add 6 for 
the first hexagon 

((4n) - 4) + 6. Because it 
works for all the numbers used 
in 2.1 

10 A 

8 d 4n + 2. You can see the 
pattern of the perimeter value. 
They increase by 4 every time 
for every 1 hexagon! but start 
at 6 (for 1 hexagon) 

4n+2. The jump is 4 every 
time but it doesn’t start at 0 it 
starts on 6 which is 2 more 
than 4 

13 

9 e 1 hexagon is six so if you 
times 6 by 100 it is 600 that is 
how much the perimeter 
would be 

Every 1 hexagon you add the 
perimeter goes up 4. Because 
one hexagon is 6 and two 
hexagons is 10 but then 3 
hexagons is 14 these numbers 
are going up by 4 

8 B 

10 e Get one hexagon and times it 
by a hundred 

p(n) = n*4.Because the 
perimeter increases by 4 for 

9 B 
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every 1 hexagon so it is 
number of hexagons 
multiplied by 4 

11 e To find the perimeter of 100 
hexagons you can multiply 
the perimeter for 1 hexagon 
by 100. This works as it's in 
proportion. Example: 1 
hexagon – perimeter of 6. 100 
hexagons = perimeter of 600 

p(n)=(n)-1.For every shape 
added, one side of the hexagon 
is lost 

11 A  

 

Type of generalisation 

Each student’s response was categorised according to its generalisations: (1) no 
correct generalisation of any kind; (2) generalisation expressed correctly in verbal 
terms only, or (3) generalisation expressed correctly verbally as well as algebraically. 
Thus the response in example #1 was coded as (1); the response in example #3 was 
coded (2); example #5 was coded as (3). 

Results  

Table 1 presents the distribution of the approaches within the A classes. We 
quantified outcomes across years and groups in order to see if there is any evidence of 
progression towards successful generalisation, or variation in approaches, bearing in 
mind that our sample is too small to make generalisations and what we are looking for 
are conjectures about development. As shown in Table 1, the correspondence 
approach to conceptualising the functional relationships was the most common within 
the A classes (57%) with many younger students making the proportional assumption 
referred to by Stacey in an effort to state a position-to-term rule (1989). The 
covariation approach was less widespread (27%). The correspondence approach 
followed by a covariation approach constituted 14% of the responses. The categories 
are distributed among years in a rather ‘messy’ form, with no specific pattern or order, 
with the exception of the first two categories of absence (1) and pre-functional 
approach (2) which are marginal and are expressed in early years only. The 
correspondence approach was the most common with the B classes as well (46%) 
with the covariation approach and correspondence + covariation approaches both at 
14% (B classes not shown in Table). 
 
Table 1: distribution of the approaches within the A classes 
 

A classes UK07A UK08A UK09A UK10A UK11A UK12 UK13 Total 
No answer 0 0 1 

(1,0,0) 
0 0 0 0 1 (1%) 

(1,0,0) 
No 
conceptualization  

0 0 1 
(1,0,0) 

0 0 0 0 1(1%) 
(1,0,0) 

Correspondence 
approach 

6 
(6,0,0) 

3 
(2,0,1) 

5 
(3,0,2) 

4 
(2,0,2) 

7 
(2,2,3) 

8 
(1,1,6) 

6 
(0,0,6) 

39 (57%) 
(16,3,20) 

Covariation 
approach 

1 
(1,0,0) 

5 
(3,0,2) 

1 
(0,0,1) 

4 
(0,0,4) 

2 
(0,0,2) 

2 
(0,0,2) 

4 
(0,0,4) 

19 (27%) 
(4,0,15) 
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Correspondence 
then covariation 

3 
(3,0,0) 

2 
(2,0,0) 

2 
(2,0,0) 

2 
(2,0,0) 

1 
(1,0,0) 

0 0 10 (14%) 
(10,0,0) 

Total 10 
(10,0,0) 

10 
(7,0,3) 

10 
(7,0,3) 

10 
(4,0,6) 

10 
(3,2,5) 

10 
(1,1,8) 

10 
(0,0,10) 

70 (100%) 
(32,3,35) 

 
The triples in the cells of Table 1 show the distribution between generalisation 

types (1), (2) and (3). As with another task (Ayalon, Lerman and Watson, 2013) 
results from the A groups have indications of progression towards full generalisation 
(see bottom row). B group results are dominated by no correct generalisation across 
years, suggesting perhaps grouping, school or teaching effects that require further 
probing.  

We relate approaches to success in achieving a correct generalisation, since 
expressing relations symbolically is also a precursor to functional understanding. On 
the basis of this small data set we can conjecture about the strongest connection 
between method and success being with the co-variation approach, and this does not 
accord with most other studies. 15 out of the 19 who tried it in A classes were 
successful (in contrast to 20 out of 39 within the correspondence approach). In B 
classes only 2 students reached successful generalisation at all, and they used 
correspondence. Of both groups, those who did not succeed with co-variation failed 
because they did not take starting values into account, as Dörfler (2008) and Radford 
(2008) point out. Those who did not succeed with the correspondence approach either 
assumed proportionality or took a deconstructive approach but did not deal adequately 
with the subtraction required (see example 4).   

Discussion 

Our data appears to contradict to some extent other studies in two main ways. The 
non-sequential presentation of data appears to have prevented some over-dependence 
on a recursive approach that focuses solely on differences in output terms. Instead, it 
is plausible that when a sequential approach requires some deliberate reorganisation 
of data, it is more likely to be associated with successful identification of co-variation 
and its role in constructing full generalisation. A correspondence approach, which is 
reported as not being usually the first resort, was indeed the first resort of about two-
thirds of our students. This suggests that correspondence is a concept available for 
students so long as they are not immediately distracted by sequential features, and 
also that past experience has an effect although we presented the data in an unusual 
form. Our approach to analysis therefore offers three features of students’ pre-
functional approach to data: willingness to look for correspondence; willingness to 
explore co-variation; and flexibility in combining those approaches. Our initial 
analysis of the previous task which was numerical, contextual and with sequential 
variations (not yet published) showed similar propensities. When correct 
symbolisation is added to the mix, we note that co-variation had a higher success rate 
than correspondence among the relatively high attaining students.  

Although this task and its analysis are only a small part of our whole project, 
and progression and success is seen clearly only in the A groups, we conjecture that 
further research about students’ search for co-variation and their understanding of 
non-sequential data might reveal more pre-functional strengths than are shown in 
these typical generalisation tasks. The decisions we made about presentation have, we 
believe, enabled students to show co-variational understanding. We also need to find 
out more about how generalisation in these tasks was emphasised in the schools in 
order to understand the difficulties experienced by the B classes, and there is a need to 
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consider the role of sequential generalisation tasks in the curriculum as our data 
suggests they can be used as a pre-conceptual pathway towards gradient in contrast to 
the usual curriculum function of expressing generality. The next stage of our research 
will be to compare the UK findings with the Israeli findings. 
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