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1. Introduction 
Mathematics teaching has always, from the earliest human records, been based on the use of examples: examples of problems and how they are solved, and mathematical objects as examples of concepts.  It is rather rare, however, for mathematical texts to invite the reader to construct examples. Instead, most texts provide the examples themselves, and expect the learner to internalise these, either as raw material from which to generalise a technique or a concept, or, as Michener observed (1978), as reference examples or a demonstration of why new methods or perspectives are going to be necessary. Learners are expected to assemble a space of examples for their own personal repertoire. Examples which occur frequently in textbooks aim to introduce learners to the mathematical canon of conventional example spaces, while the examples to which individuals have access at any moment form a personal situated example space (Watson and Mason, 2005). Note, however, that in different conditions, with different stimuli, examples accessed from a personal potential example space may differ greatly. It is helpful, therefore, to distinguish between the following four potential example spaces: (1) that which relates to the learner’s past experience; (2) the situated example space that comes to mind in the moment; (3) the conventional space as expressed in a mathematical textbook; and, (4) the collective local space which is generated in the classroom. In this paper we are interested in personal example spaces and what we can learn about them from people’s actions.  
When a student is stuck, and requests help, a very common pedagogical response given by teachers is “can you give me an example?”. All the authors of this paper have found such an approach very effective (Hazzan & Zazkis, 1999; Mason & Watson, 2001; Sinclair, Watson, & Zazkis, 2004; Watson & Mason, 1998), and it is one that George Pólya promoted in his books (Polya, 1945, 1962) under the label of specialising. This approach involves generating and using examples to explain, to test, or to illustrate; it draws on fundamental human powers that are particularly exploited in mathematics (see Mason, Burton & Stacey, 1982). Several mathematicians (e.g. De Morgan, 1831; Halmos, 1980) suggest exemplification as a key component of coming to understand new ideas. Asking the student to provide or create an example serves multiple purposes.  It probes both the student’s understanding of the concepts used in a problem, and their understanding of the problem itself, it triggers a constructive search which might scaffold new understandings, and it shows that generating examples is a useful strategy for future use.
Watson and Mason (2005) explored the internal structure of personal example spaces, and offered various metaphors for how they are structured. Personal example spaces may contain central, obvious, examples that come to mind, triggered by a word or familiar context. To a novice these may be isolated cases, while to an expert they may represent a class of objects. As well as individual cases, there are connections between cases or between classes, and depending on the context some connections may be more obvious to pursue than others. We conjecture that one aspect of becoming expert involves understanding more about how to explore a personal example space for appropriate cases and classes, rather than using the first thing that comes to mind.  The more experience learners have in using their accumulating example spaces (e.g. as toolkits, repositories, a source of models, or a territory), the more adept they may become at navigating within them, as well as using and extending the contents.
This description resembles the distinction between concept definition and concept image offered by Tall & Vinner (1981), the former being the conventional view of a mathematical idea and the latter being the accumulation of experientially-developed ideas the learner has about that idea. Our focus on examples is more productive for teaching than the broader notion of concept image. This is because learner-generated examples (LGEs) give direct insight into the nature of the learner’s conceptual understanding and also indicate the kind of examples necessary to enhance the learner’s experience of conventional mathematics. We are not claiming that such spaces actually exist in any material sense, but rather, that the notion of example space is a powerful pedagogic tool that teachers can use to analyse, understand, and inform learning and teaching.
In a study involving the concept of integration, Abdul-Rahman (2005, 2008) found that asking students to construct examples similar to the one provided by her revealed important information about her students’ understanding of the concept. In particular, they revealed a striking contrast between what they said they did, and what they actually did, when contemplating an integral.  This suggests that triggered and resonated associations are complex as people travel through the example space to which they have access at any one time.  As they construct examples, their horizons alter, and new possibilities come into view, but at the same time, one associative path can hide other, different, examples.  
The landscape metaphor proposed by Watson & Mason (op cit.) provides a meta-experience of what it is like when searching for examples and traversing a mathematical landscape.  Valleys appear and are naturally attractive to follow.  They may be logical or structural, in the sense of following structurally or logically related examples, or they may be idiosyncratic, linked by metonymic associations.  It is tempting to think of mathematical connections (structural or logical) as the natural topography of the mathematical landscape, with idiosyncratic associations a form of quantum-tunnelling between natural folds in the landscape. However, this has to be tempered by the essentially socio-cultural aspect of example-provision, influencing how personal example spaces are populated by generations of students exposed to the same, or slightly varying, canonical example spaces.
One feature of conventional spaces is that they are usually presented by a few variations.  It is anticipated that students will then experience the variation as indicative of a whole class of similarly constructed examples through appreciation of various dimensions-of-possible-variation.  However, experience in working with students suggests that while the stronger students may be doing this for themselves, what holds many students back is precisely the absence of this experience of generalisation, of creation of and access to classes of examples on the basis of a few exemplars.  Students are more accustomed to using worked examples as templates, and so are likely to treat examples of concepts as templates or recipes rather than as instantiations of generalities.
In this paper, our goal is to examine and further refine the structure of personal example spaces. In order to do so, we consider examples generated by learners of mathematics and expert mathematicians in a wide range of contexts. In analysing these personal example spaces, we also consider the influence of pedagogical choices on the example spaces accessed by learners.
2. Three Studies of Personal Example Spaces
The paper develops by drawing on a collection of studies in which learners at different ages and levels of expertise were asked to construct examples. The three studies vary in purpose.  The first compares students’ work in two very similar lessons and uses this to illustrate the importance of the teacher’s choice of examples, and the different spaces students draw on and construct given these examples. As well as explaining differences in students’ work in the two lessons, the analysis of example spaces revealed by LGEs suggests that shifts from imitating methods, to varying systematically, and then to understanding mathematical structure can be identified when examples are self-generated. The second study shows that it is not enough to say that example spaces are connected given the importance of the nature of the connections. To show this, we illustrate example spaces that are loosely or more strongly connected – example spaces that are loosely constructed from special cases generated for the task in hand, and spaces that are already well-connected and, therefore, have to be deconstructed to provide specific examples. This evidence arises from the LGEs of student-teachers learning mathematics. The third study considers the example spaces of expert mathematician and shows both how particular examples may be intentionally ignored, thereby changing the topology in the landscape metaphor, and how the development of example spaces is influenced by personal values and preferences—and is not simply a cognitive trajectory.
2.1. Effects of varying pedagogic exemplification
Our first study was set up in a naturalistic classroom setting, with a teacher teaching her usual students the usual topics in their usual lessons, but using learner-generated exemplification as a deliberate strategy.  Similar lessons were taught to two parallel classes by the same teacher, but using different examples from which learners had to reason inductively. As customary in these classes, learners chose how to record their work, and all the written notes learners produced during these lessons were collected and analysed. The aim of the analysis was to see the variety of examples created and how these examples related to the intentions of the lesson.
The teacher was asked to use two sets of prepared slides to introduce two parallel groups of students to the notation ‘kx’, where k is an scalar and x a variable, and hence to the associated concept that this multiplicative structure can be presented symbolically. The aim was to compare the relative power of structurally similar examples to stimulate LGEs by comparing the example spaces generated as a result. 
The two groups were parallel Year 7 groups in a multi-cultural inner city school and they were heterogeneous in terms of previous attainment. The groups differed slightly in that group A had a slightly flatter distribution of previous attainment levels, and group B had more students gaining the highest possible levels of attainment in their previous school.  The teacher had taught them for two terms and claimed to have taught them ‘the same’, although she was more confident in her teaching of group B as their lessons followed the lessons with group A.  She usually expected group B to achieve more. 
She was asked not to discuss what was on the slides with students but just to display them in sequence, let students read them, helping with reading if necessary, give thinking time, and ask them to start work when the final slide was shown. Students were then asked to produce examples of their own under normal classroom conditions, i.e. consulting with peers or working on their own as they chose. The contents of the five slides used for group A are shown in Table 1.
	We are going to find out what ‘3q’ is telling us
	 If q = 3 then 3q = 9
 If q = 6 then 3q = 18
 If q = 4 then 3q = 12
  If q = 9 then 3q = 27
	Make 3q equal to 15
Make 3q equal to 6
 Make 3q = 12

	What is 3q when q = 1?
What is 3q when q = 10?
What is 3q when q = 0?
	Can you make up some questions like these for 5m and 2x?
	


Table 1: Contents of group A slides.
Group B’s slides were exactly the same as those above but used 2x instead of 3q, with associated alterations, and the final slide asked students to provide examples for 3m and 5y.
We conjectured that responses would be sensitive to the salient features of the given examples, because different examples and information would afford different variation and generalisations.  This is why closely similar slides were used, ‘same’ teaching, same teacher, and parallel groups. The major difference was the choice of demonstration examples. We thought that the ‘3q’ question set would generate more acceptable responses than the ‘2x’ set, because ‘2x’ is more open to misinterpretation of ‘x’ to mean multiply; learners might understand the process to be ‘doubling’ rather than ‘multiplying by 2’ and hence be unable to generalise to other multipliers; further, there might be an existing familiarity with ‘2x’ from other experiences and this might trigger a negative reaction to algebra. The trial teacher disagreed with our expectations of confused responses to ‘2x’ as the school had a policy of introducing algebra as generalised arithmetical structure and she expected this to have prepared the ground well with earlier reminders about multiplication. However, she agreed that using ‘x’ can be problematic and said that she usually tried to avoid it in favour of other letters. 
Further decisions for the design of the slides included: (1) choosing small positive integers to ensure that most learners would recognise the multiples and their relationship to the scalars, and (2) not presenting the examples in numerical order, as this might distract from the relationship and instead develop an image of a sequence, (3) presenting special examples deliberately to prompt learners to think about typical problems, such as mis-stating multiples of 0 or 1, or wanting to ‘put a nought on the end’ when multiplying by 10. Thus, the pedagogic example space was a small and special subspace of the possible example space, and was selected and structured to suit the purpose with anticipation of what learners might do. In the ‘3q’ sequence the problematic ‘2x’ was given as a final model.  
This intervention was not sufficiently controlled to use inferential statistics, but there were differences, both quantitative and qualitative, between the groups that can inform thinking about the development and enrichment of learners’ example spaces. 
Results
	Number of students
	Group A
 (who started with 3q)
	Group B
 (who started with 2x)

	In class
	26
	25

	Average  number of examples generated
	3.45 for 5m
2.96 for 2x
	2 for 3m
2.64 for 5y

	giving correct examples with intended notation
	14
	9 (some with misuse of equals sign)

	giving examples of multiplication without correct notation 
	2
	0

	generating correct expressions and values for the variable but did not calculate the final value
	5
	4

	doing nothing or writing unrelated bits of algebra-like
	5 (e.g. “2xy is timesed by itself”)
	12

	giving ‘if this is the answer what could the question be?’ type questions, unrelated to algebra
	2
	4


Table 2: Results of Groups A and B.
In many respects group A, contrary to the teacher’s expectations, did better than group B. 
· about three times as many students in group A (3/5 of the class compared to 2/5) used correct notation to give examples
· group A students were more likely to use numbers outside the range of small positive integers
· about half of group B wrote either nothing, or seemingly irrelevant statements, where only 5 out of 25 students in group A offered this kind of response. The ‘if this is the question’–type responses relate to the fact that the teacher often poses this kind of task to trigger learner-generated questions.
· on average students in group A produced about 40% more own examples than group B in total. While quantity is not necessarily a measure of ‘better’ response, we tentatively take it to indicate more engagement and effort, given that the classes and constraints were as similar as possible.
To act successfully in this task involves more than merely following a pattern, because the multiplicative relationship has to be inferred on the first slide, and then tested in subsequent slides of special cases. Indeed, inductive meaning-making is discouraged by the order of the introductory examples since there are no obvious sequential numerical patterns. The only ‘pattern’ is the invariant algebraic structure emphasised by the combination of a fixed layout and varied numbers.  
There is more going on for learners than ‘just’ notation since they are given variables in the first slide, unknowns in the second, and special values for the variable in the third. They then have to transpose these understandings to new letters and numbers rapidly after first meeting them. The fact that it appears easier to learn this from 3q than from 2x emphasises our belief that there is more happening than imitation of layout as template; indeed, some learners in each group used non-standard notation to show multiplication, thus showing that they had engaged with meaning rather than copying format. But learning the notation was the aim of the lesson, and in this the use of 3q was, as we expected, far more successful than 2x because it presented less potential for misinterpretation. 
Now, having analysed differences and similarities due to choice of the pedagogic example space, we now turn to learning more about the learners’ example spaces. Asking learners to create several examples reveals a lot about what they know, how their knowledge is structured, and what they want the teacher to see. There is not space here to reproduce a wide range of examples of students’ work, but many in group A appeared to be ‘showing off’ their confidence in meaning-making by using large, special or decimal numbers in their examples – a much more varied range of change than that used in the demonstration slides.
This work of Learner 1 (shown in Figure 1) copies the given notation. The space is constrained to small integers, but the inclusion of special examples suggests that this person does understand that it is about multiplication.
[image: ]
Figure 1: Learner 1’s work
The work of Leaner 2 (see Figure 2) is similar to that of Learner 1, but extends the numerical example space to show that this task is not only about small integers. This theme is also displayed by Learner 3 (see Figure 3) who wants to show off calculation skills as well as using the correct notation.
[image: ]
Figure 2: Learner’s 2 work.
[image: ]
Figure 3: Learner 3’s work.
Learner 4 (see Figure 4) is systematic and correct and clearly prefers to be better organized than the examples the teacher gave! 

[image: ]
Figure 4: Learner 4’s work
There were several who presented their work in diagrammatic form, like Learner 5 (see Figure 5), but usually they gave answers too, not just questions as below:
[image: ]
Figure 5: Learner 5’s work.
The concept of learners’ personal example space is helpful in making sense of these productions. By presenting several examples, learners can demonstrate and exercise their understanding of possible variation. The intention of the task is for learners to use algebraic notation to express multiplication of a variable by a scalar, so what do we see in their written work? Firstly, there is their sense of number.  Learner 1 may have decided that this is a structural task, not an arithmetical one, and the space drawn on is the space of representative and special examples. Learners 2 and 3 appear to be drawing more on a numerical example space for their examples, and while they adopted the correct notation, their focus seemed to be more on generating numbers for m and x than on generating relationships in which 5m or 2x might be special (for example, instead of choosing x = 0, which leads to a special case for 2x, Learner 2 chooses a rather arbitrary values of x, such as 50.5.) Learner 4 is drawing on ordered integers and this suggests to us that (s)he might be drawing also on a space of numerical sequences and/or multiplication tables – a tendency that may not be helpful in the future because of the temptation to add ‘downwards’ instead of multiplying ‘across’. Learner 5 (who was the only one from group B) appears to be drawing on a very different space, that of posing teacher-like questions with examples limited to numbers related to 2 - precisely the confusion we tried to avoid in the other group.
Of course, we cannot tell much from an isolated task about longer-term learning, but seeing clues about the example spaces learners draw on gives more insight into their understanding, as well as information about what the teacher might work on next, than practice exercises designed to ‘fit’ this new idea. Clearly, learners can generate examples of newly-met concepts and can go beyond qualities of the given examples. In this study, that meant going beyond the given integers, going beyond small integers, and using other forms of multiplicative layout (not shown here for reasons of space) - a form of learning indicating appreciation of the notation and generalisation.  Learner 1 seems to demonstrate more attention to the relationship rather than calculation with her/his choices of 0 and 1. We have evidence in other studies (Watson & Shipman, 2008) that this shift to structural awareness can take place through generating special examples.
As argued in Watson and Mason (2006), analysis of learners’ example spaces, as evidenced by generation tasks, points to the importance of the initial stimulus in controlling the potential dimensions of possible variation and ranges of permissible change, as well as informing teachers where the learners’ attention might be and what assumptions are being made. 
2.2 Aspects of personal example spaces revealed by novice teachers 
In this section we describe the range of responses of a group of prospective elementary teachers to the following tasks:
(a)	Give an example of a number that has exactly 4 factors
(b)	And another, and another
(c)	Give an example of a number greater than 500 that has exactly 4 factors. 
This task was presented as a part of clinical interview to 19 volunteers (out of a class of 78).  The intention of part (b) was to direct participants’ attention to the general structure of such a number. The intention of part (c) was to implement the discovery of the structure from (a) and (b). 
The interviews took place shortly after the topic of elementary number theory was introduced in class. This included the concepts of prime and composite numbers, prime factorization and the fundamental theorem of arithmetic, least common multiple and greatest common factor, among others. The flexible structure of the clinical interview allowed for a considerable probing in order to clarify approaches of example generation. 
Two instructional matters are important to mention explicitly, as they appear to have influenced the participants’ responses. First, the definition of primes numbers was given in class a number having exactly 2 factors (in contrast with more commonly-found definition of prime number as being divisible only by itself and 1). Second, students acted out the famous “lockers” problem in class, in which there is a school hallway with 100 lockers, numbered consecutively 1 to 100, and there are 100 students who run through the hallway with the first student opening all the lockers, the second closing every second locker, the third student changing the state of every third locker, the fourth student changing the state of every fourth locker, and so on. Students were asked to determine which lockers are open and which were closed. After acting out the scenario, the open lockers are those numbered with square numbers, 1, 4, 9, 16, 25, 36, etc, also referred to as ‘perfect squares’. Recovering the “history” of the run, students were led to conclude that only the square numbers have an odd number of factors, while all the other numbers have an even number of factors. 
The influence of the Locker problem experience is echoed in Dana’s explanation of her search of numbers that have exactly 4 factors. (She found 6, 14 and 22 and then paused in a search for “and another”):
I: 	Is there any relationship in how you pick, like how do you pick these numbers?
Dana: 	Um, well, I’m choosing numbers that aren’t square roots [sic], because I know if I choose square root it will have 3 factors, or 5 factors or 7 factors, it’ll always be an odd number, and it asked for 4 factors. And, but I’m choosing numbers that are even so that they’re divisible more by, by more than just 1 and themselves, and then from there that narrows it down quite a bit. 
I: 	Do you think you can find an odd number that would have exactly 4 factors?
[…] (finds 15)
Dana: 	I’m looking for a pattern, but I haven’t actually found the pattern yet.  I’d pick an even number again, although I know I could try 515, but let’s try 502 first. 
Noticeable in Dana’s talk is a rather frequent misuse of the term “square roots,” instead of “square numbers.”  Also, there is an implicit identification of prime number with odd numbers. Although it is correct that a choice of an even number (>2) will result in more than 2 factors, there are also infinitely many odd numbers with this property. 
The reference to even vs. odd number of factors appeared in 9 out of 19 interviews. 
We shall consider two additional excerpts, chosen to illustrate the range of responses elicited from this task. 
I: 	A couple more questions. The next one asks you to provide us with an example of a number that should have exactly 4 factors. 
Erika: 	Any number? OK, well, I just pick any prime number and put it to the power of 3, that’s it, you just need one?
I: 	If that’s what you can do, then please do it. 
Erika: 	Or you could do two prime numbers, like 2x3, that’s 6. 
I: 	And can you give an example of a number greater than 500, with exactly 4 factors?
Erika: 	I’m just going to use high prime numbers, so like 13x17, no, that’s too low, so maybe 101 time 7, its 707, there you go. 
 Marie provided 6 and 8 as her first two examples, then
I: 	Can you explain to me how to get those examples, how you choose them in your head?
Marie: 	I do a lot of trial and error, it’s very time consuming and rather annoying at times. 
(The interviewer attempted to lead Marie to see the general structure but was not successful)
These 3 excerpts cover the spectrum of individual example spaces for this specific task. For Marie, examples are generated via trial and error. She can definitely provide examples upon request, but her individual example space appears disconnected since generating one example does not seem to help her generate another, or see a relationship between the two. 
For Erika, examples are generated using the general structure. Her immediate response to the “provide an example” request is not a specific example, but an algorithm of how such example can be generated, “just pick any prime number and put it to the power of 3”.  She further extends the options – “you could do two prime numbers” – before actually giving a numerical example and uses this structure to provide an example of a “big” number. We refer to her personal example space as structured or well-connected. Not only can she generate example that are related one to the other, but she can produce two different example strategies for generating numbers with exactly 4 factors.
Extending this metaphor of connectedness, we refer to Dana’s individual space as loosely -connected.  She is in search of a structure, in her words, “looking for a pattern, but haven’t actually found the pattern yet.” While for Marie there is no particular explicit reason to chose numbers and check whether they satisfy the required condition, Dana has already mentioned some structural exclusions from her search – these are square numbers and prime numbers. We further note that in her search for structure she attempts to rely on her knowledge from class activities. This appears a more ‘productive’ approach than the approach of Rita, another classmate, who used “train spotting” (Hewitt 1992) in search for a structure: Rita’s first examples of numbers with 4 factors were 2x3, 2x4, 2x5 and 2x7, after which she concluded that “2 x odd number has a better chance”. 
The excerpts introduced above suggest that personal example spaces can be classified by their “connectedness”, where being well-connected is an indication that the learner has a good understanding of the structure inherent in a concept. One salient difference between Dana’s loosely-connected example space and Maria’s disconnected one is Dana’s sense that there must be some kind of pattern unifying the different examples. This sense may well have helped initiate her search through relevant territory such as the perfect numbers she experienced in class. While this search does not provide a positive pattern, it helps her identify a whole class of numbers that do not satisfy the criterion of having exactly 4 factors—and this, in its own way, inhabits her developing example space.
While Dana’s loosely connected example space may seem to have potential for additional structure, we would like to illustrate a further situation in which a students’ loosely connected example space seems to lead to an impasse. The following excerpt is presented in detail in Zazkis and Leikin (2007). It presents the attempts of one prospective elementary school teacher to give an example of a number that leaves a reminder of 1 in division by 2. The task was intended to be a ‘warm-up’ task that was supposed to put an interviewee at ease by exploring familiar territory (Ginsburg, 1977). Cindy’s responses are unique among her peers. 
1. I: 	Can you please think of a 5-digit number that leaves a remainder 1, when divided by 2?
2. Cindy:  	(Pause) I’m thinking it would probably have to be an odd number, because all even numbers would be evenly divisible by 2 . . .
3. I:	OK . . .
4. Cindy:  	And, (pause), I’m trying to think of what number to put on the ends, but I’ll have 1 (pause), I don’t, actually maybe it’s not possible, I don’t know . . .
5. I:	What is not possible?
6. Cindy:  	To have a remainder of 1, but . . .
7. I:  	You said a moment ago something about even and odd . . .
8. Cindy:  	It couldn’t be an even number . . .
9. I:  	It cannot be an even number, so it must be an odd number . . .
10. Cindy:  Um hm . . .
11. I: 	So when you know that it must be an odd number, what do you think about now?
12. Cindy:  Well I think of the prime, actually not prime, but, (pause) I don’t know, I’m probably stumped.  Uh, (pause) I guess maybe just look at simpler cases, just look at 3 and 5 and 7 and . . .
13. I: 	3, 5 and 7, OK, there are simpler cases when you look at them...
14. Cindy:  (pause) 2 is in the 3 once, remainder 1 . . .
15. I: 	(pause) Okay, so you have written the number which is 10,003. You divided by 2, and this is your answer:  5001, remainder 1.  Oh, it was hard, was it?
16. Cindy:  (Laugh)  (Pause)
17. I: 	Can you give me another number with 5 digits, that when divided by 2 has a remainder 1?
18. Cindy:  I’ll have to play around with those numbers. I’d keep 3 on the end . . .
In [2] Cindy demonstrates a clear connection between the remainder of 1 in division by 2 and odd numbers. This connection is established by elimination, that is, “even numbers would be evenly divisible by 2”, and as such, it is implied that even numbers leave no reminder, reducing the possible examples to odd numbers. This view is also repeated in [8]. In [4] Cindy refers to the last digit of a number, mentioning “what number to put on the ends”. In such, she is likely distinguishing between even and odd numbers based on their last digit. In [12] Cindy mentions ‘prime’, probably having a momentary confusion between prime and odd. Being ‘stumped’, Cindy employs a powerful problem solving strategy – consideration of simpler but similar cases – attending to numbers 3, 5 and 7. In [14] she explicitly verifies that her example of 3 satisfies the requirement of a number having a reminder of 1 in division by 2. Having verified for 3, Cindy checks the number 10,003. In [15] the interviewer explains what Cindy has done and after a short pause asks for another example [17]. Cindy’s reply [18] – “I’ll have to play around” – is a clear indication of her intention to generate such examples by trial and error, though having faced success with using 3 as the last digit, she intends to keep this strategy. 
We consider Cindy’s example space as “loosely connected” as she does not choose numbers at random to check whether they satisfy the desired condition, she focuses on odd numbers. She understands the implication that if number that leaves a reminder of 1 in division by 2 then it is an odd number. However, the inverse implication – that is, that every odd number satisfies the requested condition – is missing. That is why she experiences difficulty in exemplifying correct general observation with a specific example. 
Watson and Mason (op cit.), in their description of personal example spaces noted that “it consists of person’s past experience (even though not explicitly remembered or recalled), and may not be structured in ways which affords easy access” (p. 76). We exemplified here that the ease of access depends not only on the contents of, but, crucially, on the connectedness within, the personal example space. 
2.3 Glimpses of Mathematicians’ Personal Example Spaces
In the two previous sections, we have examined the role and nature of the example spaces of learners. We noticed that these examples spaces could have a varying degree of structure and connectedness; how they are triggered by slightly different prompts; and also, how example spaces could be sparsely or densely populated in terms of the number of examples learners could generate for a given concept. In this section, we shift from considering learners to expert mathematicians, and examine how the notion of example spaces might also shift when considering expert users of mathematics. 

It might be inferred that mathematicians possess very dense and connected example spaces. Thurston’s (1994) description of the many and diverse ways he thinks about the concept of the derivative lends support to such an inference. After listing these different ways (geometrically, by approximation, symbolically, etc.) he offers seven “major divisions” of mathematical thinking that underpin those different ways of thinking not only about the derivative, but also about other mathematical concepts: human language; visual, spatial sense, kinaesthetic (motion) sense; logic and deduction; intuition, association, metaphor; stimulus response; and, process and time. Thus, one could imagine Thurston’s example space for the derivative being not only populated by many examples of actual derivatives (, or the tangent line to a given parabola)—as we might expect learners to generate—but also containing clusters of regions that are almost discrete. Thinking about the derivative geometrically, as the slope of the line tangent to the graph of the function, and thinking of it as a rate, as the instantaneous speed of f(t), when t is time, involve very different ways of thinking, with the former drawing on Thurston’s category of visual sense, and the latter category on process and time. Given Thurston’s claim that reconciling these different conceptions requires significant effort, we can infer that a well-connected example space is one in which such a reconciliation has been achieved. 
While these different ways of thinking could be collapsed into the “same” concept of the derivative, Thurston seems to value the particularity and personality of each conception: “Unless great efforts are made to maintain the tone and ﬂavor of the original human insights, the differences start to evaporate as soon as the mental concepts are translated into precise, formal and explicit deﬁnitions” (p. 4). Within each conceptual province, as it were, Thurston will certainly have many specific examples at hand, so that his example space for derivative might be more accurately conceived of as an example space of example spaces. The aggregation of examples spaces (a country made up of provinces, to continue the metaphor), retains its identify, and, indeed, its productiveness, to the extent to which the “tone and flavor” of each province can be preserved. In other words, the example space is psychologically and emotionally coloured by the mathematician’s experiences, preferred ways of thinking, and, of course, the problem at hand. 
Despite Thurston’s long and revealing list of ways of thinking about the derivative, the mere act of writing them down seems to have lost some of the “tone and flavor” he values; the resulting example space of example spaces has a certain phenomenological flatness. This motivated us to seek other ways of studying mathematicians’ example spaces. In order to try to retain this “tone and flavor,” we asked mathematicians to talk about certain concepts (without writing down any descriptions of definitions) and to react to dynamic representations of these same concepts. More details of this study will appear elsewhere (ref?), but we focus here on a few findings that are relevant to our interest in pursuing the notion of example spaces for mathematicians. In particular, we probe the way in which their example spaces are highly susceptible to personal preferences in terms of ways of thinking. We also show how some mathematicians talk about their example spaces in obdurately non-specific and non-populated ways. We limit our discussion here to two concepts which were probed in interviews with mathematicians, that of multiplication and quadratic function. 
One of the mathematicians we interviewed, an applied female mathematician we shall call NM, was asked to consider a Sketchpad model of multiplication on a dynamic number line, where one could drag A and/or B and observe the changing location of the product A*B. NM dragged engaged with the sketch, dragging A to be negative, and then to be between 0 and 1, and the commenting on how students often “fixate on the idea that the product of A and B takes them farther away from the origin.” She showed some interest in the representation, and ended her exploration with an enthusiastic “neat!” However, when asked whether this representation felt natural or comfortable to her, she responded by saying, “It is unusual - I am surprised that it not three dimensional.” She then proceeded to show us her 3D model of multiplication, in which A and B lie on the x- and y-axes respectively, and the product is represented in terms of height, on the z-axis. She built the model in MATLAB. After describing the model, she commented “but this is just an artifact of many years of thinking 3D. I am not sure whether it is useful for people first encountering multiplication.”
NM’s concept of multiplication could easily incorporate the dynamic number line model, from which we can infer that the model corresponded to one way of thinking about multiplication for her. However, she clearly preferred another model, as evidenced by her desire to show it to us, and linked this model to her more general approach to thinking about things in terms of three dimensions. Indeed, this was not the only concept she described in terms of a 3D lens. This strikes us as evincing an important characteristic of example spaces, which is their axiological nature: in other words, some ways of thinking (and thus, some examples) will carry more affective weight. Perhaps one thing a mathematician does is develop an example space that is not so much structured by conceptual connections, but by personal preference deriving from experience. Another possibility is that the feature emphasised by the 3D model, i.e. the form of the relationship between three variables, is of more general use to NM in other aspects of her work than the feature emphasised on the numberline model, i.e. scaling. The two models offer iconic access to different conceptual viewpoints.
For learners, it may not be personal preference that informs selection of a way of thinking so much as a lack of experience of sameness, so that encounters with a concept appear random across contexts. Thus knowledge of functions develops in clusters (linear, quadratic, exponential, sinusoidal) which appear to have little in common apart from the overall name, and the space in which one looks for examples of continuous functions is more like a row of candy jars than a connected space. As Thurston says, it is the introduction of ‘new’ concepts, such as differentiability, that changes the connections within the space. The pace of the school curriculum often underestimates the difficulty of reorganizing personal example spaces to accomplish this shift.

The second observation we made with respect to example spaces relates to the mathematicians’ responses to our prompt on quadratic function. LG is a male graph theorist we interviewed who, when given the prompt, responded by saying “well, I guess I picture a parabola, a parabola which is um or a conic section if it’s a quadratic function of two variables.” When we asked him whether he was picturing a specific parabola (a question that we hoped would elicit some actual examples), LG said “I don’t think I picture just one […] I know there is only one parabola up to scaling, that if you took any two parabolas you can always rotate it then put them side by side and zoom in on one and it’ll look just like the other […]” While a learner may actually picture a specific parabola (say, the graph of the equation ) LG possessed a graphical example space (within a larger example space of quadratic function, which contained both symbolic and three-dimensional components) in which all the examples were “the same” up to scaling. When probed further—by asking what he was actually seeing in his mind—LG elaborated as follows:

I don’t see just one. I know they’re all the same […] there is really just one parabola. Um, now in three dimensions, if you get to the quadratic functions in two variables, so something like, you know, , right, and that will equal zero and that will describe a surface in three dimensions. Now as you vary the three numbers, all the six numbers I give you around, I imagine in my mind these things, these shapes changing in space. Sometime I get a sphere or an ellipsoid or a paraboloid or hyperboloid with two sheets or a football shape thing and I try to image them changing continuously. 
One gets the distinct impression that even though LG can generate examples (a sphere ellipsoid, a parabola hyperbola or a football shape), that his example space has been somehow pinched into a single object, which can be continuously transformed (he even says that “[I] often amuse myself trying to picture these changes”). The specific examples have somehow disappeared into a black hole, and the more valued, more productive “example” has been collapsed into one. We find it noteworthy that LG refuses to give specific examples. One feature of a mathematician’s example space might then be its pinched topology, which Sfard (2008) would describe as being a result of the mathematical discursive move of “saming,” that is, assigning one name “to a number of things that, so far, have not been considered as in any way “the same” but are mutually replaceable in a certain closed set of narratives” (p. 170). Of course, we are well aware that written mathematics is full of saming, and that our focus on example spaces in the context of mathematics education, is motivated by our recognition of the importance of becoming aware of the way in which one example might be considered the same as another. What we highlight here in LG’s description is the importance he attaches to taking about objects in terms of their sameness, and not their differences, as the expression of generalisation and classification, and the foundation for constructing new objects from classes.
3. Reflections
We have seen in the studies reported here that there are several aspects which capture something of the way an example space is structured.
Population: there may be many or only a few examples available
Generativity: each accessed example may open the possibility of links to further examples. Examples come with, or afford access to, construction tools for modifying those examples, either through movement to a generality via variation, or by tinkering to create hybrids or collages from more familiar components. 
Connectedness: examples can be disconnected, loosely connected, or richly interconnected; these connections may be structural (metaphoric), associative (metonymic), or some combination of these.
Generality: examples can be weakly or strongly related through instantiation of general classes, and they can be isolated particularities with little or no relation to an encompassing generality.
The study reported in Section 2.1 reveals differences in population that learners had in their personal example spaces, with Group A producing more examples, on average, than Group B. Within each learner, we see a range in generativity of personal example spaces. For example, learner 4 varies systematically the examples using small numbers. In contrast, learner 1 appears to tinker among different values, including special cases of 0 and 1. Finally, there is further variation in the examples of learners 2 and 3 in their use of both larger numbers and decimal fractions. The question of which learner—the one who proceeds through an ordered list or the one who generates a greater variety—has the most connected or general personal example space is difficult to answer from the given data, and will certainly depend on the specific problem the learner is trying to solve. 
In Section 2.2, we see that for some students generativity is based on trial and error (Marie, Cindy), while for others, there is a recognition of a pattern regardless of whether it is explicitly recognised (Erika) or whether it is being searched for (Dana). Unlike in the previous study, generativity is obviously related to connectedness in this one. Students with well-connected personal example spaces are able to generate more examples more easily—examples that are useful for solving the problem in question. We also see in this study that generality does not necessarily influence generativity: Cindy acknowledges a general class of objects (odd numbers), but is unable to generate any specific examples for that class. A similar phenomenon was reported in Zazkis & Leikin (2007), where ‘generality,’ instead of serving as a generator, served as a “protective shield” (p. 20). In contrast, Erika’s acknowledgement of a general class (of high prime numbers) gives her a tool to generate examples according to the given constraint.
For the mathematicians in Section 2.3, there is some resistance to generating particular examples, and a preference for focusing on the variation between examples. Unlike Cindy, these mathematicians use generality neither as a generator not as a ”protective shield,” but, rather, as a safety-deposit box (which requires special effort to open but whose contents, though known, can be ignored). In terms of population, there appears to be, on one hand, a paucity of examples (often, just one), and on the other, a limitless number of unspoken examples that are all captured by a single one. This thus indicates the generality and connectedness of these mathematicians’ personal example spaces, which are characterised by thinking in terms of classes of examples rather than individual instantiations. 
These studies also underscored the fact that example spaces are not solely cognitive structures.  Generating examples increases confidence in the use of the concepts and ideas which the examples illustrate, because there is somewhere to go in order to follow Pólya’s advice to ‘specialise’ in order to test out conjectures and to try to ‘see’ what is going on in some situation, so as to re-generalise for oneself. Confidence and disposition go hand in hand. People are more disposed to deal with uncertainty and confusion as they develop experience of successfully dealing with uncertainty and confusion.  As one’s accessible example spaces develops in population, generativity, connectedness, generality and with associated construction tools, your propensity to tackle the as-yet-unfamiliar increases.
The expert has a background of resources on which to draw, and a corresponding disposition to make use of that resource, and to want to speak in terms of the general rather than the particular.  The more easily they can navigate the space of examples, and the more readily that both examples and construction tools come to mind, the more they develop confidence in their expertise.
4. Pedagogical Considerations
As demonstrated in 2.1, learners’ population and generativity of example spaces are influenced by pedagogical choices of examples. Though examples provided to groups A and B were structurally the same (showing a variable/unknown multiplied by a small scalar), the results from the 2 groups illustrate that the perception of similarity is in the eye of the beholder. 
The importance of pedagogical examples that learners were exposed to surfaces also in 2.2, where when asked to exemplify a number with 4 factors, learners explicitly alert to their prior knowledge of ‘special cases’ where the number of factors is odd. It shows that though the particular task can be approached without prior knowledge of oddness or evenness of a number of factors, this knowledge is invoked when the task is perceived as related. 
An adequate consideration of pedagogical issues calls further attention to the overuse of conventional examples, where such examples may become limiting. We believe that “doubling’ or introducing elementary algebra with ‘2x’ rather than ‘2q’ is a more ‘natural’ choice for many teachers. However, it is a problematic one, and its negative consequences can be avoided. Zazkis and Leikin (2007) have shown that ‘conventional’ examples of irrational numbers—2 and —limited the accessible example space and in some cases created a belief that these are the only known irrational numbers. A lot could be gained (and nothing lost) if the conventional proof for irrationality of a square root of a prime number uses 3 or 17, rather than the conventional 2. The following metaphor may be applicable:
Each accessed example links to or opens up links to further examples; it is something like using a torch or lantern in a dark collection of tunnels and caverns: as you move about, you encounter more possibilities, or, following the landscape metaphor, as you follow paths in the terrain, sometimes other vistas open up and sometimes the denseness of the forest limits the view.
Following this metaphor, ‘3q’ or 3 may serve as “opening the terrain” pedagogical examples, whereas ‘2x’ or 2 appear to be the ones that “limit the view”.
In addition to the issue of opening up the terrain, our studies in sections 2.1, 2.2 and 2.3 highlighted the importance of the structure of that terrain, and the different ways in which novices and experts might navigate it. At this risk of being repetitive, we saw how the number of examples that a person may have, or can generate, may not be as important as the connections and generalisations that characterise her personal example space.
5. Closure
Our early work on example spaces suggested navigation and construction as suitable metaphors for initial use, and enrichment and extension as indicative of learning (Sinclair, Watson & Zazkis, 2004; Watson & Mason, 2005).  Our analysis of the three studies we report in this paper draws attention to, and further refines, the internal structuring of personal example spaces. This structure either supports construction of examples, or is so highly generalised that it has to be deconstructed to obtain examples.  In the expert case, these two actions seem to be combined fluently, with a preference for avoiding any deconstruction, any dip into particularity. The novice-expert continuum of the accumulation and use of personal example spaces can be assessed in terms of four features: the number of examples (population), how particular examples are used to generate others  (generativity), the classification of examples into cases and the ways in which special cases are used to indicate structure (connectedness), and the generalisation of cases and how general examples are deconstructed to obtain particulars (generality). We have also highlighted the influence of pedagogical choices on learners’ personal example spaces. 
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