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In this paper we shall explore the nature of exemplification by proposing different kinds of relationship between the example(s) and the class of mathematical objects exemplified. The definition of ‘examples’ that we use throughout is from Watson and Mason (200?) in which an example is a particular case of any larger class about which students generalise and reason.
Examples can relate to the exemplified class by affording variation of particular dimensions which can then be explored and extended to experience the breadth of a class and its generalities, and by displaying the structure of relationships and properties of the class, thus affording objectification and abstraction. In this paper we explore how far these are qualities of the examples as presented, and how far they emerge from interactions between examples and the learners. 
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We demonstrate these ideas with two cases. The first case is a prompt used with students to help them reconsider their understanding of functions. We reflect on our own engagement with it for personal mathematical exploration, in a non-didactic situation, to develop our understanding of engagement with examples. The second case is from a secondary mathematics classroom in which sets of examples offered by the teacher suggest various ways in which the students might engage with the wider class:

· special cases 
· raw material for induction of generality

· access to construction methods 

· templates for action. 
· (any structural engagement?)
These two cases, taken together, lead us to ... what?
The relation between examples and learning mathematics
In her seminal paper, Rissland-Michener (date) offers example-based reasoning as the tounderstanding mathematics through knowing about examples, and using them to learn about concepts and results.  She describes them as ‘illustrative material’ (p.362) and writes about the dual relation: that examples can be constructed from results and concepts, and in turn examples can motivate concepts and results.  Experienced mathematicians slip easily between these, but students have to learn how to do this.   She delineates different pedagogic roles examples can play in this dual process:

Start-up examples which motivate definitions and give learners a sense of what is going on; reference examples which link many related ideas and to which learners can return again and again to work with; model examples which indicate general cases and can be copied from; counterexamples which sharpen distinctions between, and definitions of, concepts.  Lakatos goes much further and suggests that counter-examples not only help us define what we already know but also generate inquiry into new classes of object (ref). 

These descriptions all imply active engagement of the learner in using examples in particular ways. For instance, a start-up example has to be seen by the learner as providing meaning; a model example as a template for action and so on. Learners need to know how they are supposed to work with examples and what to focus on. 

Zaslavsky and Lavie describe a ‘good instructional example’ .as one which communicates the intended ideas to the target audience (p.2). The intended ideas could be abstract concepts which have to be reasoned inductively from particular cases (Rowland and Zaslavsky ref).  ‘A set of examples [is] unified by the formation of a concept’ and ‘subsequent examples can be assimilated by the concept’ (page refs).  Concept formation and naming go together and this enables people to imagine new examples outside previous experience. A second use of examples is for exercise, in which case a set of examples is illustrative and practice-providing with the aim being fluency and retention through rehearsal of general procedures (Rowland and Zaslavsky ref). 

It is natural for learners to try to generalise from what they are offered and Bills and Rowland (BSRLM ref) noticed that inductive generalisation can happen in two ways: empirical – i.e. generalisation from patterns in sequential results – and structural – i.e. the expression of underlying structures or procedures. Empirical generalisation requires several examples from which patterns can be noticed and generalised, whereas working on one (generic) case to identify plausible relations between its variables offers engagement with structure (refs Mason and Pimm).One example on its own cannot  trigger inductive reasoning, so it has to contain enough information for the structural generalisation referred to by Bills and Rowland, through exhibiting the relations necessary for  it to be considered generic . 

Goldenberg  (ref, PME?) considers features of example use which might bring appropriate generalisations into being in pedagogic situations. Whether the example is seen as hoped is dependent not only on the teacher’s purpose, or the internal consistency of mathematics, but also on theconstraints of the situation, as recognised and managed by the teacher:

· Purpose of example: is it an illustration of convention, aninvitation to infer, ortemplate to format other examples.
· Context: what outside understandings, e.g. everyday language use, might students bring to bear on their perceptions?

· Student expectations:  what generalities are they used to operating with?

· Language: is the issue about recognising similar or different characteristics, or being able to describe them, or remembering the name for certain classes? (page ref)
In the first item his classification is like that of Rissland-Michener’s, but the other three focus on the pedagogy. To these we would add the role of interactions between the teacher and students that lead to the didacticisation of the object (Thompson).  In other words, how does the teacher, through questioning and prompting, imbue the example with a mathematical role and purpose. A further question for teachers and textbook writers is whether and how students can learn about abstract concepts, i.e. engage in structural generalisation, from collections of nearly-similar examples when the raw material for conjectures about structure is the relations within an example, rather than similarities between examples.
Once we accept that exemplification depends on pedagogic action, we can also understand the  importance of non-examples: Dreyfus: Vinner and Dreyfus 1989:  Importance of non-typical examples to encounter boundaries of meaning and non-examples.  To support formation of concept image. Schwarz and Herchkowitz 1999.  Also Dreyfus in John’s book? However, this has to be seen in conjunction with studies which suggest that learners, and maybe also teachers, usually fail to make use of information provided by non examples given by teachers (towards the end of Sowders’ paper – ref Malo) or generated by students (Tirosh and Tsamir ??)
Sowder

Cooney David and Henderson (1975 find this) instance of a principle (e.g. a particular set of numbers that fulfil and illustrate a principle); example of a concept, e.g. addition as example of commutativity.  This requires more agreement about what is meant by ‘concept’ than we think exists in the field. Fortunately Sowder suggests this distinction is unnecessary and ‘example’ and ‘instance’ should be used interchangeably. 
Antonini

Variation theory 
The study draws on variation theory (Marton & Pang) 

Affordances

First case
We start with an account of what we did when prompted by a function task. We then conjecture about student responses and nominate the affordances and exemplifiable principles that might be made evident by the task, and how this might be enacted.
For this to have more than ad hoc meaning we then identify the exemplified class. We discuss how this family of examples can be turned into a didactic object (Thompson). 
Task 1: Find the equation of a curve which crosses the x-axis three times at (0,0), (2,0), and one other place, and also passes through (3,3). Is yours the only possible solution? Does it have to be a cubic?

Using Watson and Mason’s definition of ‘example’ as applying to all particular instances that might indicate a generality (ref) we ask ‘What can this task exemplify?’ Our discussion will show how the realisation of affordances will depend on the mathematical backgrounds of those who attempt the task, and on the intent and actions of the task setter. Furthermore, with teachers this task affords two layers of exemplification: equations with given parameters; and tasks which prompt learners to construct objects and then explore the extent of the class.
Both of us had used similar problems with students(Chick, 1988). When we came to discuss our ideas for this paper, however, these experiences were at the back of our minds and we approached the task afresh, and independently. Our natural inclination was to solve the problem first, before attending to issues associated with exemplification. 

When we came to compare our solutions we found that we had each approached the problem differently. We both knew enough about functions in general and polynomials in particular to know that there are, indeed, multiple solutions, and many classes of suitable functions, including cubics, quartics, quintics, and so on. We had both, however, decided to work with cubics, again because both of us already knew enough about polynomial functions to understand that this is the simplest case with the fewest degrees of freedom but sufficient to give the required three zeros. Where we differed was in the approaches that we took to the possible parameters. The first approach treated the phrase “and one other place” as defining a fixed but unknown third zero, at the point (m,0), thus making m a parameter for the problem. With three given zeros, and the class of functions restricted to cubics, the factor theorem implies that the appropriate function must have the form
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In the absence of other constraints, k is free to vary, giving a family of cubics passing through the given zeros at x = 0, x = 2 and x = m. However, the given problem imposes an extra constraint that impacts on k: the function must pass through (3,3). Thus we must have that 
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If we then solve for k, which is constrained by the four points involved, we have 
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This represents a family of cubics, determined by the parameter, m. In other words, we get a class of cubic functions, fixed by the two given zeros and (3,3), and governed by the location of the third unspecified zero.

The other approach recognised that there were two degrees of freedom associated with the problem: the position of the third zero and the steepness of the cubic. The resulting form of the function, f(x) = kx(x – 2)(x – m) is identical to that obtained earlier, as is the use of the third given point (3,3) to yield 3 = 3k(3 – m). However, this formalisation was understood differently as it was then solved for m in terms of k, to give
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The difference between these approaches lies in the interpretation of what is “known” and what is determined “in terms of”. In this second case the “steepness”, k, was regarded as fixed, with the third zero (the “one other place” of the original problem) being determined by it. 
On seeing each other’s solutions, the authors immediately began discussing the role of parameters and what it was about our interpretations of the problem that led to our differing treatments. In fact, the use of parameters is at the heart of this problem, and it could be argued that one of the principles that can be exemplified via this task is the nature of parameters and how they differ from variables. To understand our different approaches we unpicked their role. These are the quantities that are structured to form a particular object. They  take an arbitrary value, yet by considering how these values can vary we can change the function of interest. In many cases they might be viewed as “unknown knowns”; they are treated as if we know their value, and yet we do not, which allows us to wonder what happens when they vary. Thus when considering functions there are two kinds of variation a learner might be attending to: the variation of the variables, and the variation of the parameters. We shall return to this issue later.
It is, of course, important to note that the authors brought considerable mathematical experience to the tackling of the problem; our previous experiences with functions and mathematics in general meant that not only were we comfortable with the forms and properties of polynomial functions, but that we could manage the “unknownness” of the third zero, and that our approaches were exclusively algebraic, although we both had images of cubic graphs in our minds. 

The task, as written, certainly appears to assume certain knowledge, although perhaps it need not be as much as the authors employed above. What might happen, then, in a classroom where some of this knowledge—particularly the use of parameters—is not as familiar? Let us now assume that this task has been given to students with less but still some knowledge of functions in general, polynomials, and the factor theorem. Let us also assume that they are given the task as written, with no additional instruction. This thought experiment is informed by our teaching experiences with secondary school students, and with novice teachers. There are several approaches that the students might take. One can imagine them marking the given points on a set of axes, picking an arbitrary point on the x-axis to be the “one other place” where the curve crosses the axis, and then sketching a graph passing through the points. It is likely that they may wonder about the effect of their choice of value for “one other place”. Perhaps they will be uncertain about whether or not they are permitted to pick such a value, when it was not given explicitly in the problem; perhaps they already appreciate that picking different values will give different curves. Alternatively, perhaps they will just choose a value with little reflection, solely because they are told there is this third crossing point, and it is only later, when they compare graphs with other students, that they realise the extent of the implications of this choice. 

There are some things to note about this graph-sketching approach. First, it clearly has the potential to reveal that there are many solutions to this problem. This outcome is almost certainly going to arise from different choices of the position for the third zero. In this case, our exemplified class is a family of sketch graphs, having in common two zeros and the point (3,3), and the existence of some third zero which will vary across graphs. The shape of the functions will likely vary, and will be further affected by sketching skills.

What is more interesting, however, is what can be exemplified if everyone in the class has the same point as the third zero. Answering the question of whether or not different curves can be drawn through four points—the given (0,0), (2,0), and (3,3) together with a fixed third zero (m,0) for some chosen m—is easy, in one respect, using a graph-sketching approach. Given the freedom to draw an almost arbitrary free-flowing curve (provided that it is a function of x), it should be evident that many different curves can be drawn through the four points. What is harder to address, however, is what “kind” of curves will work, whether or not they can be expressed algebraically, what is the “simplest” function that passes through the four points, and how many such “simple” functions there are. These questions are not so amenable to a graphical approach.

This brings us to algebraic approaches. The wording of the original task suggests a familiarity with simple polynomial functions, with its mention of “cubic”. The emphasis on points on the x-axis (zeros) further suggests that the factor theorem may be an intended affordance of (or, at least, tool for) the task. Students might thus begin by attempting to express possible functions in polynomial form, perhaps starting by writing y = f(x) = (x – 0) (x – 2), with an awareness that this is, as yet, incomplete. Treatment of the third zero may follow the same possibilities as discussed for the graphical approach: students either pick an arbitrary point because the task is interpreted to suggest that the choice is theirs to make, or they pick an arbitrary point but with an awareness that a different choice will result in a different function. In the latter case, there may be varying degrees of understanding of where and what impact different choices will have on the resulting function. There may also be students who can express the generality of the arbitrary third zero, by using a point like (m,0). This allows the incorporation of a third factor: either a specific choice like (x – 7), or a generalised representative like (x – m). Students will then attempt to deal with the fact that the function is also to pass through (3,3). If they do not already have some understanding of families of functions of the form y = k g(x) (where k is a real number) then even trial and error approaches are unlikely to yield a suitable function. Chick (1988) suggests some possible difficulties. If students have picked a particular third zero, say at x = -4, then it is likely that they will have the function f(x) = x (x – 2) (x + 4) as a tentative candidate function. In order to ensure that this passes through (3,3) students might substitute x = 3 to obtain y = f(3) = 3 (3 – 2) (3 + 4) = 21, which is 18 more than the desired value of y = 3. They may then posit f(x) = x (x – 2) (x + 4) – 18 as their function, without realising that this function no longer has zeros in the requisite places.
On the other hand, students with knowledge about scalar multiples of functions—and the fact that zeros are invariant—may propose f(x) = k x (x – 2) (x – m) as their function (where m has either a specific numerical value or is a parameter). This was the first-described of the approaches taken by the authors on seeing the task. 
There is another possible approach to the task that students might try, studied by Chick (1988), in a similar problem with three given zeros and the y-intercept. In this approach, again assuming that a cubic polynomial is sought, students might use the general polynomial form of a cubic:
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Knowing that (0,0) is a point on the function immediately yields d = 0, after which the fact that (2,0) is on the function gives 0 = 8a + 4b + 2c and the fact that (3,3) is a solution gives another equation 3 = 27a + 9b + 3c. At this stage there are two equations, but three unknowns. What happens next will again depend on how students deal with the unspecified third zero. If they pick a specific point (perhaps a “nice” one like x = -1, to make a simple equation), then they will have three equations in three unknowns, which can then be solved. Some students may have sufficient meta-cognition to appreciate at least some of the consequences of a different choice of specific point; at the very least to realise that a different equation will arise. 

Those who can deal with the arbitrariness of the third zero might pick (m,0) as the fourth point on the function, and obtain a third equation: 0 = m3a + m2b + mc. For many this is likely to be an uncomfortable moment: m is, if you like, an unknown known, while a, b, and c are the actual unknowns for which we must solve. The distinction between these two uses of pronumerals is difficult for students. Using the first two equations it is possible to find expressions for b and c in terms of a (to whit: b = 1 – 5a and c = 6a – 2). Using the third equation, and remembering that we are solving for a, b, and c in terms of m [and excluding the already used m = 0 and m = 2 as possibilities for the third zero], we obtain 
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The fact that there are multiple types of functions that satisfy Task 1—cubics, quartics, compound functions, and even functions that may not be able to be expressed algebraically—probably can be established by graph-sketching alone. If we focus on cubic functions more specifically the existence of a variety of different plausible sketched graphs, together with a set of different specific algebraically expressed functions, may be sufficient to establish the existence of a collection of cubic functions that satisfy the requirements of Task 1. 

Establishing the "relatedness" of these cubic functions, and the idea of a family of solutions, may be more difficult. Students need to appreciate the full generality of the situation and the role of parameters in defining the family of examples for the cubic case.  Developing the idea of a family or class of solutions can be supported by the use of technology such as graphing packages that allow the use of parameters. This allows students to see what the graphs in the family have in common and what aspect—in the case of the first approach defined above, the position of the third zero—is affected by the parameter. Figure 1 presents three contrasting examples from the family of cubics obtained by such a method. 
[image: image10.jpg]



Figure 1. Some functions satisfying the requirements of Task 1: passing through the origin, (2,0), (3,3), and crossing the x-axis in a third place. These were obtained by setting up the parametrized cubic function in a CAS package like Geogebra or TI-Nspire, with the parameter m as a “slider” that can varied to obtain members of the family of graphs, each with a different third zero.
It seems likely that in a given classroom any combination of the approaches suggested above could arise, leading to a collection of examples of functions meeting the requirements of the task. The actual combination would depend on familiarity with different representations, availability of technological tools, and habits of attention – such as whether students initially  think about functions in terms of parameters,  curve shapes, or covariation.  There are likely to be non-examples as well: functions that meet some of the requirements but not all, or functions that initially were constructed with the requirements in mind but, in the process of modification, no longer meet them. In some cases, the solution will be a single function; in others there will be a family of functions. The resulting examples can be used as specific cases—or families of cases—that can exemplify a number of important mathematical principles. Some possibilities are listed in Table 1.

Table 1. Mathematical principles that are afforded in Task 1.

	Principle
	How exemplified

	There is an infinite number of possible functions through four given points
	Can be illustrated by the existence of numerous functions through the four points. These functions may be either graphical or algebraic solutions, and may be defined explicitly or may be roughly sketched implicit representations of such functions.

	Four points (in general position) define a unique cubic polynomial function
	Difficult to illustrate through graphical means alone; students’ algebraic examples—where students have chosen a specific third zero—give rise to fully defined single functions. Parametric solutions can also illustrate this, provided the role of parameters is understood. [Note, however, that these examples do not fully exemplify the uniqueness of the cubic through four arbitrary points, since three of the points involved here are zeros.]

	Parameters define a particular relation between variables
	Can be illustrated by looking at several different explicit examples that use different specific values for the third zero. Can also be illustrated by a parametric solution. A CAS graphing package can demonstrate further the role of parameters in the solution.

	Parameters are “unknown knowns” that can be varied.
	By first treating (m,0) as a fixed but unknown root, and using it to determine the function, it is then possible to ask how the function might change if m is varied.

	Parameters can be regarded as given or dependent
	Any of the parametric solutions to the task require choosing one parameter as independent  (e.g., m in the examples discussed) and treating others as dependent on it (e.g., k, the “strechedness” of the cubic in the first of the authors’ solutions).

	The role of dependent and independent quantities
	Any attempt at a general solution requires the choice of an independent quantity and then the identification and determination of the value of dependent quantities. The authors’ contrasting choices in their solutions allow a closer examination of this issue.

	 Individual objects can be varied to generate families with similar characteristics
	Any of the parametric approaches will work for this. The use of CAS to support understanding of the idea of a family of examples is useful. 

	A function can be considered as a mathematical  object, not merely a representation of a relation
	By considering different functions, represented both graphically and algebraically, students focus on the function as an object its own right, rather than relying on the idea of “plugging” different values of x into a formula.

	Different representations of functions afford attention to different properties
	Using any of the factored algebraic representations reinforces the connection between zeros and factors; the final solution presented makes use of the general form of a polynomial. 

	Other mathematical techniques (e.g., solving simultaneous equations)
	Depending on the approaches taken a variety of mathematical techniques may be reinforced and exemplified. Again, these may not be the main point of the task.


It is difficult to know what students might learn from Task 1 without guidance. Certainly the task, as constructed, affords the opportunity to encounter multiple solutions even in the absence of teacher direction, although it is conceivable that students may stop after picking a specific third zero and finding—graphically or algebraically—just a single function through the four given points. Nevertheless, it seems likely that accessing the larger affordances of the task, especially the idea of parameters and families of functions, is more likely to occur with appropriate teacher guidance. This is evident in the contents of the second column of Table 1. 

This highlights the need for the examples that are generated by the task, and indeed the task itself, to be turned into didactic objects. Discussions need to be steered in productive directions, features must be brought into focus at the same time as irrelevant aspects are downplayed, and there are principles that might be illuminated so that the general can be seen from the particular. In short, for most students there is a teaching process that needs to take place, with the examples as didactic objects, in order to ensure that what can be exemplified is made evident. Given the vast scope of this task for exemplification, the choices made about how to use the examples as didactic objects fundamentally depend on a teacher’s own perceptions of the task, his/her evaluation of what it is perceived to exemplify, and his/her decisions about what it is important to emphasise through such examples. Moreover, these choices also depend on the current understandings of students, and what paths the students have followed in their own explorations of the task. They will be affected further by a range of classroom factors from the pragmatic to the prosaic, such as the availability of technology, time remaining in the lesson, and the exigencies of the curriculum.  

The exemplified class question
Chick, H. L. (1988). Student responses to a polynomial problem in the light of the SOLO taxonomy. Australian Senior Mathematics Journal, 2 (2), 91-110.

To theorise further about how examples become didactic objects, and how the generalisations they afford become the focus on learners’ attention, we now look at one instance of exemplification in a  lesson. As we say at the start of this paper, we are interested in what is made available for students and also how they are expected to enact with these examples. It is the enaction with examples that reifies their exemplariness. By that we mean that it is in the teacher’s and learners’ actions we can see objects being generalised into classes, making the objects into examples of something.
Zara is an experienced secondary teacher close to retirement. During her career she spent time out as a research assistant in a nearby university at a centre of mathematics education, and is an active member of a professional organisation for mathematics teachers.  The school she works at was recently awarded the title of ‘specialist college for mathematics’. We observed two lessons in which she was introducing conversion between decimals, percentages and fractions to an all-attainment class of 11 and 12 year-olds whose prior knowledge of these was varied. In the first lesson her aim was to encourage use of a continuous linear image of number. We analysed a video of this lesson, focusing on her actions and public statements, to identify what examples she offered and what examples students introduced in the whole class.  Our aim in recording and observing Zara had been to learn more about the possible pedagogic variety of example-use, and we knew that Zara was aware of the importance of example choice. 

 In this part we shall report on episodes in the lesson, and then show how these prepare students for different kinds of generalisation.

Episode 1

Zara asks students to ‘write down as many sets of three numbers as you can that add up to 4’.  After a few minutes she asks students for their suggestions and writes them on the board. These are the first three sets:

3
 ½
½

1.5
0.5
2

3
1
0

Another student offered ‘googolplex to the power of four divided by googolplex to the power of three’ and she engaged in a brief positive discussion  toreformulate the suggestion, and reminded them that they were only allowed to use ‘add’. She praised the whole class for using a broad meaning of number that included fractions, decimals, zero and negatives. 

Episode 2

Pairs of students were given a metre stick and a lump of modelling plastic, which they had to roll out into a snake one metre long. She asked them to find out anything interesting about fractions and numbers using these two materials. She asked them if they had any ideas about why she had given them the metre stick. One student replied that it had 100 centimetres marked on it. Zara said that the stick is ‘one whole’ and the snake is also ‘one whole’ and then wrote ‘1/100 = 0.01’ on the board. 
The public statement of the task was very open, but she went round the class helping them decide on a more distinct focus.  About 10 minutes after they had rolled out the modelling plastic and done various other things that we could not discern from the video, she stopped the class and asked them whether these were the same or different:

0.5
0.50

Several students replied that they were the same and gave explanations using the metre stick as ‘one whole’ and 0.50 as indicating 50 centimetres. She pointed to the ‘1/100 = 0.01’ and asked what 1 cm. is as a fraction of a metre.  Then she asked them to find out what they could from the metre stick and from cutting their snakes into: ‘one half; one third; one quarter; one fifth; and one eighth’. From this we could make sense of what she had been doing with pairs of students during the previous ten minutes, namely discussing with them the relations between fractions of the one metre snake and decimal readings on the stick.

Episode 3

Towards the end of the lesson, Zara stopped their activity to have ten minutes reviewing what they had found out. She said it was very important that they should have a picture of how decimals and fractions match ‘in your mind’. She then wrote:

½ = 0.5

and asked ‘can I have the decimal equivalent of a quarter?’

¼ = 0.25

She asked a particular student for ‘a third’ and the student replied ‘zero point three three’. Then she asked for an eighth.  Two students almost simultaneously called out ‘nought point 8’. Her response to the first one was ‘Did you do it? Did you write it in your sheet?’. She then said: ‘this needs to be in your mind ... picture where it is’. Another student said: ‘ zero point one two five’.  At that point the bell went and some students began to pack away, but she said; ‘we are not going until you can match some fractions and decimals’ and asked for one fifth, and then one tenth, which were answered correctly.  The lesson was over-running in time, and she began to have difficulty keeping their attention.  At the end of the lesson this list was on the board:
½ = 0.5

¼ = 0.25

1/3 = 0.33

1/8 = 0.125

1/5 = 0.2

1/10 = 0.1

Analysis of the affordances of the example sets
The first episode we have described illustrates that Zara was aware of the limited meaning students in lower secondary school can give to the word ‘number’ and needed them to have a different example space on which to draw for this lesson.  In workshops with teachers and teacher educators we find the same limitation and our experience with such tasks suggests that her students were well-used to extending their idea of number to the whole class of reals, as they knew it. She told us afterwards that this had been her aim, particularly for this lesson, as she hoped they would go on to use a visual image of a numberline to relate fractions, decimals and percentages. Using learner generated examples to extend the available example space, that is to extend the class associated with ‘number’, is a specific teaching strategy that promotes learning. Extending the learners’ example spaces in this way alters the relation between the example offered and what  learners believe is exemplified b because they now have access to a more diverse class, and hence to broader generalisations.
In the second episode, Zara was explicit with the students about some things but not others as she set up a task comparing lengths on a metre stick with lengths of modelling plastic. She fixed the notion of ‘one whole’ and showed that this was a special decision by asking students why, and they responded with their realisation that it was something to do with one hundred. Because some of the students would already know that ½ = 0.5 (and maybe a few other standard decimals) they could have seen ‘1/100 = 0.01’ as an example of the kind of equivalence they already knew something about. This being written on the board could function both as an example of a class of relations and also as a special elementary case from which other examples can be constructed. The next example, comparing 0.5 and 0.50, is also indicative of a class, but this time not a class of relations but a class of equivalences which can be constructed, i.e. it does not matter how many zeroes you put on the end. However, it is not clear from the video whether students understood this to be a reference example for a rule of equivalence or a special case. Finally in this episode Zara lists the fractions she is particularly interested in hearing about, and this example set includes fractions related by halving, a fraction whose decimal recurs, and two that can be confused with each other through not understanding the reciprocal: ½ = 0.5 and 1/5 = 0.2.
Her aim, she told us, was for them to relate everything to the number line so that they abandoned spatial images of fractions. She was explicit with them about wanting them to make ‘the match’ - a connection between fractions and decimals, via the linear model, so that the same image could be referred to for meaning.

In episode three, students’ responses suggest that something else was happening. While we can imagine students cutting a 50 cm. snake in half and reading off ‘0.25’ from the stick, but to read ‘0.33’ is harder to believe, when one considers the plausible error bounds involved in measuring. Furthermore, the student who gave ‘0.125’ for one eighth could not have been reporting a reading a length of modelling plastic from the stick, given the level of accuracy required. Perhaps these were students who already knew the relation and had edited their readings to make the right answer. More interesting were the two (and maybe more) students who believed that one eighth is ‘nought point eight’ – a result that could not have come from measuring an eighth of the whole snake. This was the common error which she had designed the task to avoid, the kind of intuitive error that Fischbein and others have called ‘more-more’ (ref) and  relates to understanding the reciprocal.
Zara’s  response to ‘0.8’ was to ask them if they had actually made and measuredthis length. From this interchange, she reported later, she found that a few students were making up their minds what the answer was to be, and then rolling their modelling plastic into thinner lengths to reach their assumed answers. In other words, they did not see the task as about matching lengths and reading off from the stick, but about assuming a relation based on the common reciprocal error and making their lengths match. For students to believe the 0.8 result they have to have generalised from some relation in which digits do match, or be enacting some kind of meaning-free manipulation. It is interesting to note that the ‘0.8’ answer followed from the ‘0.33’ answer which can suggest a direct relation between the digits of the denominator and the decimal digits. The final fraction of the lesson, 1/10, will not have dispelled that myth, nor will the example of 1/100 which was on the board.
Before we report what happened in the next lesson we summarise the relations between example and exemplified class illustrated in this lesson:

· Extending the meaning of a class beyond obvious examples by asking students to construct several cases that fulfil a constraint (non-typical examples (Dreyfus) and imagining example beyond experience (Zaslavsky and Rowland)
· Indicating and naming types of example that constitute a class, where there is the danger of assuming a subclass represents the whole class (Goldenberg, language; Sowder, over- or under-generalisation)
· Individual and sets of examples which indicate a relation between classes, by being presented in a particular layout (not sure if this is reference or model example, but is certainly inviting structural inductive reasoning)
· Examples which provide elementary cases from which others in a class can be built (generative: does not figure in classifications above, but is also maybe reference so long as it does not contain too many irrelevant features, which 1/10 does!)
· Examples which express equivalence (same thing, different representations)  (instance of the principle of equivalence)
· Formatted references to use when dealing with other class members (templates, not mentioned above, is this a model example in Michener’s terms?)
· Sets of examples that span the possibilities in a class, the subtypes, and also can be used later as raw material to identify relations within the class (inductive, structural, might be used empirically if are well-ordered, illustrations of concept) .
· Examples in which superficial visual (possibly incorrect) relations can be easily inferred from appearance.
Zara was disappointed in the lesson; she had hoped that they would adopt the linear image as a reference for meaning, but found that the affordances of the material allowed something different to happen that had, if anything, confirmed the misconception that decimals had to contain the same digits as the fraction notation.  Furthermore, some students had relied on prior knowledge and therefore may have missed the experience of matching that she had designed. She resolved to use paper strips next time so that no one could stretch the materials to fit their preconceptions.

Lesson 2

In the next lesson with this group, Zara abandoned the hope that they would develop a linear model of number and used some commercial software that gives manipulable images of coins with their monetary, fraction, decimal, and percentage equivalents on the interactive white board.  This software drew on their everyday knowledge of money and used individual coins to represent elementary objects which could be combined to make other sums of money. Because of the isomorphisms between money and decimal number, Zara could pose questions starting from any given, and then ask students to work at the board and ‘fill in the blanks’ for the other cells. For example:
50p
1/2
0.5
50%

The software allowed these four cells to be revealed in any order.  Students had to predict what the cells would contain for 20p and 10p coins. Both Zara and the software emphasised that these were always expressing fractions ‘of a pound’.  Zara would ask ‘why?’ for each selection.  She then asked them to work individually to produce the same four representations for other sums of money, and asked two students to reveal, on the board, those they found hard. 1p and 5p were selected by students and Zara discussed these with the whole class, ending up with:

1p
1/100
0.01
1%

5p
1/20
0.05
5%

written on the board. When she asked a student how she had arrived at 1/20, the reply was that ‘there are twenty lots of five in a pound’, and when she asked about ‘0.05’ the reply was that it was ’five times 0.01’. 

She then illustrated 60p as three 20p coins, and 75p as a group of 50p, 20p and 5p coins, and asked them to work on these. After a short while answers were given and written up:

20p
1/5

60p
3/5
0.6
60% 

One student called out that the fraction could be 6/10 and Zara agreed.  Multiplying 0.01 by six, or 0.02 by three, were methods students reported using. Then:

75p
¾
0.75
75%

was written and a student explained ¾ by saying that ‘there are four lots of 25p in a pound, and 75p is three of them’.
Affordances of examples in this lesson
Zara’s aim in this lesson was to utilise knowledge they already had and to try a ‘fresh start’ after the difficulties of the previous lesson. The software she chose gave her complete control over the examples she used, and she started with coins whose proportion of a pound she judged to be fairly easy to express and explain. Representations of 50p were already familiar for them but they had to work harder to get 20p, and while they were doing this she tried to establish (she told us afterwards) the language pattern ‘there are five 20ps in one pound’ which we observed students using later in the lesson. The lesson proceeded to consider the coins students had found hard to express: 1p and 5p, but Zara had been aware that these were likely to emerge as problematic. She chose to work publicly with these putting 1p first, so that 5p could be seen to be a multiple of 1p. This repeated the use of 1 cm. in the previous lesson – the provision of an elementary example from which others could be constructed. The process of multiplicative construction was repeated at the end of the lesson, when ‘20p’ was written as a precursor to working on representations of 60p.  She had illustrated 60p using three 20p coins, and ‘times 20p by three’ was offered as a method by students. 75p had, however, been offered additively as 50p + 20p + 5p. Nevertheless the method for arriving at 3/4 given by a particular selected student, and praised by Zara, was multiplicative.
Reflection on the roles of examples in this lesson shows that Zara used again:

· Individual and sets of examples which indicate a relation between classes, by being presented in a particular layout
· Examples which provide elementary cases from which others in a class can be built

· Examples which express equivalence (same thing, different representations) 

· Formatted references to use when dealing with other class members

In addition, there were further uses:

· examples as situations in which to develop language patterns suitable for thinking about fractions of a whole (Goldenberg, language important but this time as s structuring device, not about everyday usage, i.e. not Goldenberg)
· examples that afforded multiplicative, in contrast to additive, thinking (used more purposefully than any of RM’s categories I think; importance of purpose.
Note also that Goldenberg’s situativity parameters very important: outside understandings about modelling materials and about the ‘more-more’ intuitive assumption leading to the reciprocal error messed up the first lesson.  Everyday money knowledge helped directly in the second, but limited the exploration to discrete cases.

When analysing these lessons we were struck by the contrast between the continuous linear image of number afforded in the first, that we know to be important in mathematics, and the discrete image afforded in the second. But we could also see that the second afforded articulation of multiplicative relations between the reals, and multiple isomorphisms between four representations, where the first lesson had offered only a relation between fraction and decimal notation. 

Didactic objects and examplehood

We have said that how examples are seen – what generalisation is being exemplified – is critical in learning. Zara’s use of examples enables us to think about how teaching affects the relation between the examples which are available for students and the possible generalisations they can construct. Zara’s role in drawing students’ attention to the most mathematically valuable generalisations is critical. In Thompson’s words, she creates didactic objects .....
Our analysis of Zara’s use of examples suggests four kinds of generalisation, rather than the two indicated earlier.

Different levels of generalisation: 

· empirical (all examples are like this) visual, templating; variation of surface features and numerical features; 
· syntactic (we express all examples like this) notation; layout, format same
· semantic (it doesn’t matter what they look like or are expressed as, all examples have this meaning) beyond visual; how to ‘read’; representational variation
· abstract (this is a property of the class, and from now on we shall focus on the property) shift beyond visual and ‘reading’ to new objects – via naming and attention on covariation and relations.
Importance of relation between examples and generalisations; examples and extension or enrichment of the learners’ example space; affordances of classroom environment; prior classifications informing our identifications.
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� We are grateful to Liz Bills for suggesting this task
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